Therefore, the primary aim of the current study was to uncover the neural underpinnings of the price framing effect in bundle purchase decision-making by electrophysiological techniques. To attain this goal, two major price frames were created with the same total price for a bundle with two products, including a relatively expensive focal product and a relatively cheap tie-in product. In one price frame, both the focal and tie-in product were offered at a normal price (normal price condition, NP). In the second price frame, the tie-in product was offered at zero price while the total price of the bundle remained the same (zero price condition, ZP). Furthermore, a recent study reported an interesting finding that for price promotions offering product upgrades, it could be more effective when the upgrade was offered at a small token price (e.g., buy a Canon camera and upgrade its memory capacity from 16G to 32G for ¥0.1) rather than for free (Mao, 2016). We speculate that the tie-in product in a bundle might be treated as an “upgrade” in Mao's study. To test if Mao's findings could extend to a general bundling context, a third experimental condition was created such that the tie-in product was offered at a low token price (¥0.1, which was about equal to 0.016 US dollars at the time of experiment), whereas the focal product was offered at the same price as the focal product of ZP (low price condition, LP). Altogether, this study included three experimental condition (i.e., NP, ZP, and LP) with practically identical total prices (with a maximum difference of ¥0.1). During the experiment, participants were asked to view each bundle and determine if they would buy it or not while their scalp electroencephalogram (EEG) were recorded. According to prior literature on purchase decision making (Zhao et al., 2015; Goto et al., 2017), the late positive potential (LPP) is of particular interest to the current study.