Methods Participants Thirty-three healthy right-handed undergraduates from Guangdong University of Technology participated in the study. All participants were native Chinese speakers with normal or corrected-to-normal visual acuity and without any history of neurological disorders or mental diseases. The experiment conformed to the Declaration of Helsinki and was approved by the Internal Review Board of the Laboratory of Neuromanagement and Decision Neuroscience, Guangdong University of Technology. Participants provided written informed consent prior to the experiment and were paid for their participation after the experiment. Data from four participants were excluded, three for excessive artifacts during EEG recording and one for noticing the experimental manipulation and the purpose of the study, resulting in 29 valid participants (15 females) ranging in age from 19 to 23 years (mean ± SD = 20 ± 2.1). Experimental stimuli We used color digital pictures of 90 products selected from JD.COM, one of the largest online retailers in China. A variety of products were included, such as food, drink, electronics, personal hygiene products, stationery and others, all of which were familiar to our participants. Forty-five bundles were created, each of which comprised two products, a relatively expensive focal product and a relatively cheap tie-in product. The two products in each bundle were functionally complementary or related (e.g., a power bank and a USB cable, a pack of coffee, and a mug). Three price frames were devised for each bundle. Therefore, there were 45 trials in each frame condition and 135 trials altogether. For NP, the original prices for each component of the bundle were calculated as the mean of the prices in two different online shops. In order to encourage the participants to buy bundles during the experiment, offered prices for each component in NP were discounted from the means of the prices by ~20% (Knutson et al., 2007; Goto et al., 2017). For ZP, the tie-in product was offered at zero price while the total price of the bundle remains the same as NP. For LP, the tie-in product was offered at a low token price (¥0.1) while the focal product of LP had the same price as the focal product of ZP. Experimental procedure Participants were comfortably seated on a chair in a dimly lit, sound attenuated room. The stimuli were presented centrally on a 19-inch computer monitor (1,280 × 1,024 pixels, 60 HZ) against a gray background at a distance of 90 cm in front of the participants. E-Prime 2.0 software (Psychology Software Tools Inc., Pittsburgh, PA, USA) was used to deliver the stimuli and a keypad was provided for participants to make responses. Prior to the formal experiment, participants received instructions about the task and were tested for task comprehension in the practice trials. Participants got a virtual allocation of ¥70, which could be used to buy the bundles during the experiment. As illustrated in Figure 1, each trial began with a central fixation cross for 1,000 ms, which was followed by the presentation of a bundle for 2,000 ms with a visual angle of 8° × 3.7°. The focal product was placed to the left of the cross and the tie-in product the other side. Next, an empty screen was displayed for 400–600 ms randomly. Afterwards, the bundle was again presented with the prices displayed in red below each component for 4,000 ms, during which participants had to decide whether to buy the bundle or not at the offered prices. The response-to-hand assignments were counterbalanced across individuals such that half of them were instructed to press “1” for “buy” and “3” for “not buy” while the opposite was true for the other half. The virtual allocation was reset for every trial. The 135 trials were pseudorandomly assigned to three blocks, and the order of trials was pseudorandom within each block such that different price frames on an identical bundle did not appear within three consecutive trials. The experiment lasted for about 22 min. After finishing all trials, participants were asked if they were clearly aware of the experimental manipulation and the researchers' true intent. If a participant was aware of these, then the data from this participant would be excluded from further analysis. Figure 1 Schematic illustration of one trial of the experimental task. Participants were instructed to make a “buy” or “not buy” decision after the presentation of the bundle along with price information. To ensure the participants' motivational engagement in the shopping task, one trial was randomly selected to be implemented after the experiment (Knutson et al., 2007; Goto et al., 2017). If the participant chose to buy the bundle in that trial, then the bundle was later shipped to the participant, and cash “savings” corresponding to the initial allocation (¥70) minus the total price of the chosen bundle was paid to the participant. If not, the participant received the full allocation (¥70) as payment. This approach was used to maximize the realism of the shopping task because participants had a real chance of getting one of the “purchased” bundles, and cash saving was an inherent part of price-based shopping behavior. Moreover, in order to minimize possible biases produced by strategies built upon buying only a small subset of products, and following previous research (Goto et al., 2017), participants were informed before the experiment that they would lose money on their final cash savings if they failed to buy a sufficient number of bundles. If the number of bundles bought was < 20, then ¥20 would be subtracted from the savings. If the number was between 20 and 24, ¥10 would be lost. If this number was between 25 and 29, ¥5 would be lost. If more than 30 bundles were bought, no money would be lost at the end. As a matter of fact, all participants bought more than 30 bundles and not any penalty was applied. EEG data recording and analysis The EEG was recorded with eego amplifier, using a Waveguard EEG Cap with 64 Ag/AgCl electrodes mounted according to the extended international 10–20 system (both manufactured by ANT Neuro, Enschede, Netherlands). Channel data were online band-pass-filtered from 0.1 to 100 Hz and recorded at a sampling rate of 500 HZ. The left mastoid served as on-line reference, and the EEG was off-line re-referenced to the mathematically averaged mastoids. Impedances were kept below 10 kΩ throughout the experiment. EEG data were pre-processed off-line using ASALab 4.10.1 software (ANT Neuro, Enschede, Netherlands). Ocular artifacts were identified and corrected with the eye movement correction algorithm used in the ASALab program. The EEG was digitally filtered with a low-pass filter at 30 Hz (24 dB/Octave) and segmented into epochs of 1,000 ms, time-locked to price onset and included a 200 ms pre-stimulus baseline. Trials containing amplifier clipping, bursts of electromyography activity, or peak-to-peak deflection exceeding ±100 V were excluded from averaging. ERP averages were created separately for each experimental condition (i.e., NP, ZP, and LP). As expected, a pronounced LPP component was elicited by different price frames. According to the visual observation of the grand average waveforms as well as previous studies on purchase decision making (Goto et al., 2017), three electrodes (Cz, CPz, and Pz) distributed among the centro-parietal sites were selected for LPP analysis. The average amplitude of LPP in the time window of 400–600 ms after the onset of price stimulus was submitted to a 3 (price frame: NP, ZP, and LP) × 3 (electrode: Cz, CPz, and Pz) repeated-measure ANOVA. The Greenhouse-Geisser correction (Greenhouse and Geisser, 1959) was applied in case of violation of the sphericity assumption (uncorrected dfs and corrected p-values were reported), and the Bonferroni correction was used for multiple paired comparisons.