3.2. Series 2: Method Effect In this series, several pillaring methods were evaluated according to basal spacings, and surface areas obtained. The pillaring methods that employed reflux (sample 6) and in situ processes (samples 8 and 9) resulted in low basal spacings and low surface areas, indicating that these methods were not effective (Table 6). Samples 7, 10, and 11 presented larger basal spacings than the natural clay (Figure 3). Method 7, in which the pillaring agent was allowed to stand for a month and used subsequently, resulted in high surface area and basal spacing, indicating that the properties of the pillaring agent had not changed over time, proving that large amounts of pillaring agent could be produced and stored without the pillaring solution losing its function. Samples 10 and 11, in which the pillaring agent synthesis was performed in one day with heating at 60 °C, presented high basal spacings and surface areas, demonstrating the insertion of Al pillars. Thus, in the methods in which the pillaring agent was prepared separately (without being in situ) and with a clay expansion in water, the best results were obtained. Therefore, the pillaring method influences the characteristics of the materials obtained, and when comparing methods 10 and 11, there is no need to expand the clay lamellae and to submit the clay to cationic exchange for 48 h. These stages are fast, so 2 h is sufficient for each procedure (clay expansion and cationic exchange) to obtain high basal spacings and surface areas. Table 7 presents the textural parameters obtained using methods 7, 10, and 11, which represent the highest values of basal spacings of the series 2 samples. The samples prepared using methods 7, 10, and 11 are compared to the natural clay and the sample pillared by the traditional method (Table 7). The samples prepared by methods 10 and 11 presented similar features in comparison with the clay pillared by the traditional method. The surface areas obtained by these materials are in the same order (225 and 237 m2/g) than the PILC prepared by the traditional pillaring procedure (234 m2/g). The same trend is observed for the others parameters (micropore and external areas and total and micropore volumes). In fact, the sample pillared by method 11 presented results slightly higher than the PILC obtained by traditional pillaring method, proving that the former method is highly efficient for the synthesis of pillared clays. Thus, the amount of pillared clay was increased when the methods 3 (6 days pillaring agent) and 11 (1 day pillaring agent) were followed, using the relation of 1 g of clay to 100 mL of water in the clay suspension (higher dilution). This relation was used because, according to the results of series 1, as larger amounts of water are used in the clay suspension, the surface areas and basal spacings become higher.