Secondly, advances in protein quantification techniques, via both experimental and computational developments, will likely continue unabated. Many quantification techniques do not take into account the peptides that may become post-translationally modified or otherwise lost in a biological state. Currently, decreases in label-free measured quantity may be confounded by differences in protein modifications, digestion, or ionization, or matrix effects from different samples. For instance, the acquired spectral counts may be inflated by the existence of shared peptides among multiple (documented or undocumented) protein forms [87] as well as the sampling saturation for high-abundance peptides [88]. Statistical approaches pioneered in transcriptomics may be useful which can take into account the many-to-many mappings between proteins and peptides and to reconstruct proteoforms from individual peptide signals.