4.2. Non-Iterative NCA Algorithms This section presents four fundamental non-iterative methods, namely, fast NCA (FastNCA) [31], positive NCA (PosNCA) [33], non-negative NCA (nnNCA) [34] and non-iterative NCA (NINCA) [32]. These algorithms employ the subspace separation principle (SSP) and overcome some drawbacks of the existing iterative NCA algorithms. FastNCA utilizes SSP to preprocess the noise in gene expression data and to estimate the required orthogonal projection matrices. On the other hand, in PosNCA, nnNCA and NINCA, the subspace separation principle is adopted to reformulate the estimation of the connectivity matrix as a convex optimization problem. This convex formulation provides the following benefits: (i) it ensures a global solution; (ii) it allows usage of efficient convex programming techniques, like the interior point method [24]; and (iii) it offers the flexibility of adding additional convex constraints. Since SSP represents the core technique of these non-iterative NCA-based algorithms, this important concept is first explained in the next subsection. 4.2.1. Subspace Separation Principle Assume matrix X is decomposed into the sum of two other matrices X=B+Γ, where X∈RN×K(K