3.1. Integration for NSEx The first data integration analysed the effects of the NSEx mechanism, which integrates the additional datasets for exploring the structure of the interaction network. In order to identify which dataset is more useful (of those described; Section 2.1), different variants of NSEx were employed to assess the contribution of each data type separately, followed by the integration of all types. Hence, five different variants of NSEx were derived and compared to the algorithms using the SC time series data only: SC+NSEx.KO (using knock-out experiments for NSEx), SC+NSEx.GO (using GO annotations for NSEx), SC+NSEx.BSA (using binding site affinities for NSEx), SC+NSEx.CORR (using correlation among genes for NSEx) and SC+NSEx.ALL (using all data for NSEx). Table 3 displays AUROC and AUPR values for the five NSEx variants compared to the SC algorithm (using time-series data only). Standard deviations for all values are also included, computed from nine out of ten runs at a time (bootstrapping) and showing very low variability of results. In terms of individual datasets, the set of predicted transcriptional interactions improves when including BSA and KO data, while GO and CORR data seem to have no effect or impact negatively on the interaction quality. However, the combined effect of all datasets does appear to achieve significant improvement in network topology, indicating that even weak data integration has some value, and that collectively, the dataset types can offer enhanced insight. microarrays-04-00255-t003_Table 3 Table 3 Algorithm incorporating NSEx. Qualitative results: AUROC and AUPR values obtained after 10 runs with each algorithm and, in parentheses, standard deviations for subsets of 9 runs (see Section 2.3 for details on how these were computed). Variants: SC (SC time series only, without integration of additional data), SC+NSEx.KO (using knock-out experiments for NSEx), SC+NSEx.GO (using GO annotations for NSEx), SC+NSEx.BSA (using binding site affinities for NSEx), SC+NSEx.CORR (using gene-correlations for NSEx) and SC+NSEx.ALL (using all data for NSEx). For additional datasets, BSA followed by KO lead to improved sets of interactions, while CORR affects selection adversely. However, the combined effect of all data types provides optimal inference of the interaction set. Quantitative analysis was also performed, with RMSE values shown in Figure 1. No improvement in terms of the simulation capability of the models was obtained, although if descriptions of interactions can be improved, so too should gene expression pattern simulation. The current limitations may be due to persistent distortion of the fitness landscape by noise or may be inherently linked to under-determination. The evaluation criterion based on SC data only is crude, so that reverse engineering becomes increasingly fuzzy. This argues strongly for inclusion of further data types in model selection, through the NSEv mechanism. Figure 1 Algorithm enhanced with NSEx: quantitative results. The graph shows the distribution (over 10 runs) of RMSE on test data (DC dataset) for models obtained with algorithm variants (as for Table 3). A t-test performed for each enhanced version to compare performance to that of the basic SC variant gave p-values as shown. No significant change was observed in RMSE values after integration. 3