2.2.1. Comparison of Meta-Analysis Methods Several comparative studies systematically comparing meta-analysis methods for microarray data have been previously published [33,53,54]. Chang et al. [33] benchmarked the performance of six p-value combination methods (Fisher, Stouffer, adaptively weighted Fisher, minP, maxP, and rOP), two combined effect size methods (fixed effects and random effects) and four combined ranks methods (RankProd, RankSum, product of ranks, and sum of ranks). The 12 meta-analysis methods were categorized into three hypothesis settings (candidate markers DE in “all” [HSA], “most” [HSr], or “one or more” [HSB] studies) based on their strengths for detecting DE genes. They then applied four statistical criteria to the assessment of each meta-analysis method: (1) detection capability (the number of DE genes detected); (2) biological association (degree of association between DE list with predefined genes from pathways related to the disease), stability (randomly splitting the data and comparing results of the two-meta-analyses) and robustness (effect of including an outlying irrelevant study to the meta-analysis). Among the methods based on HSA setting, the maxP performed the worst based on their four criteria and the investigators recommend that it be avoided. Rank product method had improved performance but weaker detection capability. The two methods that tended to detect DE in the majority of samples were the Random Effect Model (REM) and the rth order p-value (rOP). rOP outperformed REM based on stronger biological association and detection capabilities, but this was achieved at the expense of diminished stability and robustness. It is important to note that differentially-expressed genes determined by combing p-values or ranks obtained by two-sided hypothesis testing may result in genes with discordant DE across two-class outcomes which can be difficult to interpret [27]. Wang et al. [37] have proposed one-sided correction of p-values to guarantee identification of DE genes with concordant DE direction.