Mutations in the GFAP gene are thought to account for greater than 95% of cases of AxD [9]. The downstream effect of this insult is thought to include decreased astrocyte stress response [2], proteasome dysfunction [5], GFAP aggregation [10], and possible loss of astrocyte myelination signaling to oligodendroglia [11]. It has been postulated that mutation site location in the GFAP gene may influence the discrepancy in distribution of injury seen between AxD subtypes [6]. The D128N mutation in our patient is an exceedingly rare finding. A case series of late onset AxD revealed the D128N mutation in a 64-year-old male with lower limb weakness, gait abnormalities, asymmetric motor impairment, spasticity, globally increased deep tendon reflexes, and Babinski sign [6]. MR changes included marked signal changes/atrophy of the bulbar region and cervical spinal cord. While nonspecific, the severe lower limb involvement seen in our patient, complicated in our case by neuropathy and paraplegia, is in keeping with the initial presentation of the previously reported patient with the D128N genotype. Additionally, the neuropathologic findings in our patient, including atrophy of infratentorial structures on gross examination and on imaging, are consistent with reports on type II AxD [6, 8]. No signal abnormalities were detected in the periventricular white matter in our patient, a finding also seen in previous report(s) of older patients with type II disease and this feature, in particular, is not typically seen in individuals over the age of 40 [6].