Third, the recognition of individual capabilities to compensate for relative blood volume deficit during progressive hemorrhage led to the conceptualization of the ‘compensatory reserve’, a new paradigm for measuring the sum total of all compensatory mechanisms (e.g., tachycardia, vasoconstriction, breathing) that together contribute to ‘protect’ against inadequate tissue perfusion during blood loss. In our effort to discover a way to measure the compensatory reserve of individuals, our research efforts were refocused to the recognition that measurements of changes in arterial waveform features represented the integration of all cardiac and peripheral compensatory responses to hemorrhage and could provide us a tool to distinguish high- from low-tolerant individuals. By establishing collaboration with robotics engineers from the University of Colorado, our results have been translated to the development of the first prototype of a beat-to-beat ‘shock’ monitor that incorporates waveform feature extraction techniques with machine learning [22]. For the first time, tracking blood loss, early prediction of decompensatory shock, and accurate assessment of resuscitative interventions in a specific patient are possible. This technology has been shown to reduce the time required by paramedics to recognize an unstable patient by >40 % [23]. The applications of this technology to people getting out of bed after surgery, the nursing home, sports medicine or many other occupational settings are infinite. This will undoubtedly revolutionize medical monitoring, diagnosis, and interventional actions for the future of emergency medicine.