In 2002, the Director of the US Army Combat Casualty Care Research Program (CCCRP) assigned me to manage a newly formed science effort that focused on pre-hospital emergency care of combat trauma casualties under fire called Tactical Combat Casualty Care (TCCC) Research. Since hemorrhage is the leading cause of death on the battlefield, our research team developed a human physiology laboratory that translated the use of LBNP into a noninvasive model for the study of human hemorrhage (Fig. 5). The capability to induce pre-syncope in all our subjects allowed for the development of a large data base (>260 humans) to model the hemodynamic, respiratory, autonomic, metabolic and coagulopathic responses during the compensatory and early decompensatory phases of hemorrhagic shock in otherwise healthy, conscious surrogates of military personnel. The findings from these studies led to new insights into our knowledge and understanding of identifying and treating progressive hemorrhage prior to the onset of overt shock, and proved critical to the conceptualization of three primary advances in extreme physiology and medicine. Fig. 5 Vic Convertino undergoing a simulation of hemorrhage in the LBNP chamber during a 2006 experiment. Dr. Caroline Rickards, NRC post-doctoral fellow, is applying intrathoracic pressure regulation therapy with an impedance threshold device