Sulfate radicles could be produced through the activation of persulfate (PS, S2O82−) with ultraviolet [20], heat [21, 22], microwave [23], sonolysis [24], base [25], granular activated carbon [26], quinones [27], phenols [28], soil minerals [29], radiolysis [30] and transition metals [31, 32]. Sulfate radicals are more effective than hydroxyl radical in the oxidation of organic contaminants. They have higher redox potentials, longer half-life and higher selectivity in the oxidation of organic contaminants (SO4-•, E0 = 2.5-3.1, half-life = 30–40 μs) than hydroxyl radical (HO•, E0 = 1.89–2.72 V, half-life = 10−3 μs) [33–39]. Hence, the organic pollutants could be oxidized entirely by SO4-•, especially benzene derivatives compounds [18]. Generally, sulfate radical reacts with organic contaminants predominantly through selective electron transfer, while hydroxyl radical mainly reacts through hydrogen abstraction and addition. Therefore, the possibility of sulfate radical scavenging by nontarget compounds is lower than hydroxyl radical [39–42].