Due to inherent randomness in Genetic Algorithm, the edges added and deleted in N1 (while inferring N2) were different among different run of simulations. Some of the changes in the network were found to be more frequent compared to other. So, just few runs of simulation couldn't be relied upon to find the changes in the N1 network causing cancer. Therefore, to find consistent (or conserved re-wirings) changes to the network, we performed the simulation for 150 times for inferring N2 from N1 and another 150 rounds of simulation for inferring N3 from N2. The changes which occurred in the network with the highest frequency were selected to construct N2 (and subsequently N3). The most frequently removed edges in the N1 network while inferring N2 were SMAC-XIAP, Casp8-Casp3 and p53-PUMA. For 150 rounds of simulations, each of these deletions occurred with a frequency of 146, 143 and 141 respectively. The network edges found to be inserted in the N1 by the Genetic Algorithm with the highest frequencies were XIAP-Casp8 and TNFR-Stat3, with frequencies of 149 and 146.