Influence of free (non-GTPase-complexed) GDI levels on Rho activation dynamics To confirm the contribution of GDIs in sustaining Rho activation, we simulated Rho activation dynamics in the presence of various cellular concentrations of free GDIs, i.e., GDIs not complexed with GTPases. Based on the literature [28], we calculated the concentration of free RhoGDIα to be 0.7 μM (Additional file 1: Table S1). We used a range of concentrations of free GDIs close to this value to simulate the Rho activation dynamics. The canonical model predicted that an increase in free GDIs would simply lead to an overall decrease in Rho activation (Figure 2A). However, in our GDI-integrated model, while the increase of free GDIs also led to an overall decrease in Rho activation, this did not negate the sustained Rho activation (Figure 2B). Unexpectedly, the presence of free GDIs sustained the Rho activation level beyond 1,800 min after stimulation, in contrast to the cessation observed at this time point in the absence of free GDIs (Figure 2C). Figure 2 Free (non-GTPase-complexed) GDI concentration affects the prolongation of Rho activation in the GDI-integrated model. Rho activation dynamics were simulated at various concentration of free GDI. A) 600 min after stimulation in the canonical model. B) 600 min after stimulation in the GDI-integrated model. C) 1,800 min after stimulation in the GDI-integrated model. The activation levels of GTPases were expressed as the concentration of GTP-Rho/Effector complex.