Komurov et al. [17] hypothesized that cross-talks between EGFR/ErbB signaling and metabolic pathways contribute to resistance to lapatinib. More specifically, they identified that glucose deprivation reduces the inhibiting effects of lapatinib by up-regulating constituent genes and thus providing an EGFR/ErbB2-independent mechanism of glucose uptake and cell survival [17]. Here, by using the same gene expression datasets, we found MDM2:STK11 cross-talk between EGFR/ErbB and IGF1R signaling, where STK11 (also known as LKB1) phosphorylates and activates AMPK in absence of glucose [67]. Again, in the integrated signaling circuitry of pathways: p53-IGF-1-AKT-TSC2-mTOR, a positive feedback loop (p53-PTEN AKT-MDM2-p53) is formed which enhances p53-mediated apoptosis and senses nutrient deprivation [67]. Thus our results complement the findings of Komurov et al. by finding signaling cross-talks between EGFR/ErbB and IGF1R pathways.