Eye-movement recording During the task, eye movements were recorded using an infrared eye-tracking system (ISCAN, Woburn, MA) at a rate of 60 Hz. A chin rest ensured a stable position of the head at 100-cm screen distance. Eye position was calibrated using a five-point calibration procedure. Data were analyzed using the i-LAB software (Gitelman, 2002) under the Matlab environment (Mathworks, Inc.). For each trial, blinks were filtered using the pupil-size parameter, and missing points were replaced using a linear interpolation between preblink and postblink values. To derive eye-movement measures, three rectangular regions of interest (ROIs) were drawn covering: (1) the eye region, (2) the mouth and lower nose region, and (3) the whole face. Parameters were computed as the proportion of ocular movements made over eyes/mouth ROI within the total ocular movements made over the whole face. Four dependent measures were extracted for analysis: number of fixations, scanpath length, scanning time, and gaze maintenance. Fixations represent the frequency of stationary gaze points during scanning and were defined as a set of eye positions within a defined area (0.30 × 0.30 degree area) for a selected amount of time (100 ms) and calculated using a velocity/distance algorithm (Gitelman, 2002). Scanpath length refers to the summed distances traveled by the eye during scanning, measured in degrees of visual angle (expressed in pixels). Scanning time refers to the time spent by the eye traveling over the stimuli, calculated in ms. The gaze maintenance calculation indicated whether gaze was or not maintained in the selected ROI for the entire trial duration (500 ms). For each outcome measure, a cutoff of minimum 25% valid trials was adopted in order for data from any individual to be included.