The Endocannabinoid System Though the significant role played by various neurotransmitters, genetic factors and specific brain structures in reinforcing the properties of psychostimulants has been established, the common mechanisms underlying the development of addictive behaviors have yet to be fully elucidated. A growing body of evidence points to the involvement of the ECBS in the acquisition and maintenance of drug-taking behaviors and in various physiological, as well as behavioral processes associated with addiction. Interestingly, a characteristic of psychostimulants abuse is the concurrent consumption of other substances including delta-9-tetrahydrocannabinol (Δ9-THC) – the main cannabinoid found in cannabis [reviewed in Ref. (89)]. This poly-substance pattern of use has prompted researchers to investigate the potential interaction with, and effect of, these drug on neuropsycho-biological processes related to addiction. For example, some studies reveal that cannabis consumption enhances the incentive to use cocaine in individuals dependent on both, while others suggested that cannabis reduced withdrawal symptoms in abstinent cocaine-addicted subjects (22, 90, 91). Although it is recognized that components of the ECBS are involved in cocaine-seeking behaviors, very few studies have focused on understanding the neural and behavioral effects of endogenous and exogenous cannabinoids on psychostimulant use. In this section, we will first provide an overview of the ECBS, and then focus on recent findings pointing toward a role of the ECBS in the circuitry underlying psychostimulant addiction. Overview The ECBS consists of a family of lipid signaling molecules referred to as endocannabinoids, their cognate receptors and specific metabolic enzymes which are responsible for degradation of the endocannabinoids – anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The neurobiological properties of endocannabinoids are complex, but it is now well established that they modulate a wide diversity of physiological processes including pain and inflammation, immune responses, food intake, synaptic transmission, cognition, reward, and motor activity (92). Endocannabinoids also influence mechanisms involved in addiction and relapse. Receptors There are currently two well described subtypes of cannabinoid receptors, termed CB1 and CB2, which differ in their signaling mechanisms and tissue distribution. Even though CB1 receptors are considered the most abundant and widely distributed G-protein-coupled receptors found in the CNS, they are also present in peripheral organs and tissues (i.e., endocrine glands, leukocytes, spleen, heart, and gastrointestinal tracts, etc.) (93–97). CB1 receptors are localized in TH-expressing neurons, probably dopaminergic neurons of the NAc, VTA, striatum, and pyriform cortex, suggesting that the ECBS may directly influence dopaminergic reward mechanisms. In addition, CB1 receptors are expressed in other neural regions related to reward, motivation and memory processing (i.e., basolateral amygdala, hippocampus, and cerebral cortex), movement (i.e., basal ganglia, cerebellum), pain modulation (i.e., certain parts of the spinal cord, periaqueductal gray). Endocannabinoids induce LTD of the inhibitory synapses in the hippocampus, contributing to the synaptic plasticity involved in the learning processes related to addictive behaviors. CB1 receptors are confined at the terminals of central and peripheral nerves, where they inhibit the release of excitatory and inhibitory neurotransmitters (release on command, retrograde signaling) (98–100). Thus, the activation of CB1 receptors protects the nervous system from over-activation or over-inhibition by neurotransmitters and thereby promotes the latter’s prominent role in anxiety, depression, cognition, addiction, motor function, feeding behavior, and pain (101). CB2 receptors are mainly found in immune cells (i.e., spleen, tonsils, and thymus gland) (102–104), although recent experimental data indicate CB2 receptors expression in the cerebellum, brainstem, and cortex (105–107) as well as activated microglial within the CNS (108–110). Simulation of CB2 receptors on microglia modulates the neuro-inflammatory response by regulating cytokines release in the brain (111–113). Increasing evidence points toward the existence of additional cannabinoid receptors subtypes in the CNS. Indeed, recent pre-clinical studies suggest the persistence of cannabinoid-like properties after cannabinoid agonists have been administered to mice lacking CB1 and CB2 receptors (CB1−/− and CB2−/−) in neuronal subpopulations. This indicates that these agonists recognize non-CB1/CB2 cannabinoid receptors (114–117). Among these receptors, the orphan G-protein-coupled receptors modulate the ECBS. GPR55 specifically is found in the striatum and to a lesser extent in the hippocampus, the thalamus and the cerebellum (118). GPR55 is phylogenetically different from CB1 and CB2 receptors, in that it is activated by the CB1 antagonists – rimonabant and AM251 – but blocked by the cannabinoid agonist CP55, 940 (119–121). Thus, GPR55 is considered as a non-CB receptor with a binding site for cannabinoid ligands [reviewed in Ref. (122)]. Though a recent study from Rusakov’s group suggests that GPR55 enhances neurotransmitters release at central synapses (123), further studies are required to confirm its neurophysiological function. The actions of endocannabinoids are not only restricted to the CB1, CB2, and GPR receptors. Transient receptor potential (TRP) receptors have also been identified as sites of endocannabinoid interaction. Exogenous and endogenous cannabinoids interact with at least five TRP receptors (124); AEA binds to the transient receptor vanilloid potential 1 (TRVP1) with low affinity. TRVP1 is found on sensory neurons, where they are partly coexpressed with CB1 receptor, but also in several central nuclei including the hypothalamus and basal ganglia, the hippocampus and cerebellum (125). The efficacy and potency of AEA at TRVP1 is increased when the AEA degrading enzyme FAAH (fatty acid amide hydrolase) is suppressed (126–128). Surprisingly, pharmacological or genetic inhibition of FAAH enhances AEA, but decreases 2-AG levels via TRVP1 receptors (129). Interestingly, both endocannabinoids AEA and 2-AG decrease the excitatory GLU and the inhibitory GABAergic inputs to striatal neurons (130, 131). Therefore, it is likely that the potential of AEA to reduce 2-AG levels by activating TRVP1 receptors might represent a mechanism to integrate excitatory and inhibitory inputs in the basal ganglia. Endocannabinoids and their metabolizing enzymes In the CNS, endocannabinoids mediate forms of short-term synaptic plasticity known as depolarization-induced suppression of inhibition (DSI) (132, 133) and depolarization-induced suppression of excitation (DSE) (134). Thus, endocannabinoids are considered as retrograde messengers that neuromodulate diverse physiological processes. AEA and 2-AG are the two most characterized endocannabinoids (135, 136), although other studies have identified of additional endocannabinoids such as 2-arachidonylglyceryl ether (noladin ether) (137), N-arachidonoyl-dopamine (NADA) (128), and O-arachidonoyl-ethanolamine (virodhamine) (138). However, the physiological functions of these endocannabinoids are still being investigated. While 2-AG acts as a full agonist at CB1 and CB2 receptors, AEA behaves as a partial agonist at both receptors subtypes and can also interact with GPR55 and TRVP1 receptors. Unlike other neurotransmitters, AEA and 2-AG are not synthesized and stored in the nerve cells. Rather, they are produced on an “as needed” basis by their membrane lipid precursors in a Ca2+ dependent fashion (133, 139). Although additional studies are needed to ascertain the exact role of the N-acylphosphatidylethanolamine phospho-lipase D in the ECBS, it has been proposed that this enzyme might play a significant role in the synthesis of AEA (140). The enzyme responsible for 2-AG synthesis is the diacylglycerol lipase alpha (141). Upon depolarization of post-synaptic neurons, the endocannabinoids released into the synaptic cleft bind to and activate the presynaptic CB1 receptors, which in turn suppress the release of both excitatory and inhibitory different neurotransmitters [see for review (142)]. Then, AEA and 2-AG are rapidly deactivated by cellular reuptake into both neurons and glial cells and metabolized by specific enzymes (143). AEA can be metabolized by either the FAAH (144), or monoacylglycerol lipase (MAGL), which degrades specifically 2-AG (145). In addition to MAGL, recent studies have suggested that the enzymes ABHD6 and ABHD12 could also be involved in 2-AG metabolism (146, 147). FAAH is over-expressed in the CNS and FAAH-positive neurons are localized in proximity to CB1 receptor-containing terminals, underlining the role for this enzyme in endocannabinoids inhibition (148). Thus, selective inhibition of FAAH (149) and MAGL (150) can prolong the effects of endocannabinoids. Pre-clinical studies have demonstrated that pharmacological inhibition of FAHH with URB597 (149) or PF-3845 compounds (151) induced-anxiolytic-like effects (152, 153) and anti-nociceptive properties in mice (152, 154). Inhibition of MAGL with JZL184 inhibitor causes analgesia, hypothermia, and hypomotility (155). However, chronic exposure to JZL184 impairs endocannabinoid-mediated synaptic plasticity in mouse hippocampus and cerebellum via 2-AG upregulation. It also induces tolerance to the analgesic effects, physical dependence, and persistent activation as well as desensitization of brain CB1 receptors (156). Surprisingly, MAGL knockout mice show enhanced learning behavior and have normal locomotor activity, suggesting the possible role of MAGL in cognitive function (157, 158). Exogenous cannabinoids: Δ9-THC vs. CBD Cannabis is the world’s most commonly used illicit drug (159, 160). Between 119 and 224 million people are cannabis users worldwide (4). Cannabis contains over 85 different chemical substances unique to the plant and termed phytocannabinoids. Among them, Δ9-tetrahydrocannabinol (Δ9-THC) and CBD are the two main components of cannabis, which has been used for thousands of years for both recreational and medicinal purposes. Most studies regarding cannabis properties have focused on Δ9-THC, which is the main psychoactive constituent in cannabis extracts (161). Although Δ9-THC possesses a number of therapeutic effects (e.g., on pain, spasms, inflammation), its negative impact on the CNS has been highlighted in several clinical studies on subjects smoking cannabis, documenting impulsive behavior, cognitive impairment, consumption of addictive substances, and psychiatric disorders (e.g., schizophrenia, depression, and anxiety) (162– 165). For example, Δ9-THC has been shown to induce psychotic-like and anxiogenic effects when administered intravenously to healthy subjects (166, 167). Other experimental studies revealed that Δ9-THC injection in animal models causes hypolocomotion, catalepsy, antinociception, and hypothermia (168). Pharmacological studies in animal models suggest that not all therapeutic effects related to cannabis administration can be ascribed to Δ9-THC [reviewed in Ref. (169)]. Indeed, CBD – the second most abundant cannabinoid found in cannabis – acts as an antidepressant and possesses anticonvulsant, antiemetic, anxiolytic, and sleep-promoting as well as neuroprotective properties in humans (160, 170–176). CBD mediates its neuropharmacological properties by acting as an inverse agonist on CB1 and CB2 receptors (177, 178); it also stimulates the TRVP1 and TRVP2 (179) which serve as so-called ionotropic cannabinoid receptors. In addition, CBD inhibits FAAH, the main catabolic enzyme that alters the hydrolysis of the endogenous cannabinoid neurotransmitter AEA (180) (see above section), and is also an antagonist at the putative GPR55 receptor. The clinical association of the modulation of the ECBS by CBD remains to be fully investigated; this effect could arguably be related to DA uptake inhibition (181). Interestingly, ECBS interacts closely with other neurobiological structures which are implicated in the neural adaptations observed during chronic use of drugs and vulnerability to addiction. For example, CBD plays a role in the modulation of extracellular levels of DA (182) as well as μ and δ opioid receptors (183); it increases adenosine signaling through inhibition of uptake (184). Moreover, μ opioid and CB1 receptors colocalized within neural regions are known to modulate reward, goal-directed behavior, and habit formation relevant to addiction including striatal output projection neurons of the NAc and dorsal striatum (185, 186). While further studies are required to better understand the impact of CBD on GLU neurotransmission, its protective effects on GLU toxicity (187) and its psychopharmacologic interaction with ketamine (188), a N-methyl-d-aspartic (NMDA) receptor antagonist, are well documented. CBD activates also the serotoninergic receptors 5-HT1A (5-hydroxytryptamine) (171, 176, 189–193), which in turn diminishes vulnerability to stress and has anxiolytic-like effects in animal models (170, 172, 189, 190, 192–195). Similar results were observed in humans, where CBD administration decreases autonomic arousal and subjective anxiety (196). Interestingly, these anxiolytic effects have been linked to the modulation of core regions involved in the “emotional brain,” including limbic system structures such as the AMG and the ACC (197, 198). CBD’s anxiolytic effects were further confirmed by a study indicating that the effective connectivity between ACC and AMG is attenuated during the emotional processing of fearful faces, while resting activity of the left parahippocampus gyrus is increased. (196, 199). Remarkably, these neural structures are activated during drug craving in cocaine addiction (197, 200). It also decreases compulsive behaviors in rodents, which is hypothesized to be related to CB1-related mechanisms (201, 202). While CBD has neuroprotective properties (187, 203, 204) and Δ9-THC administration have been shown to cause neurotoxic effects (205), these opposing properties have been highlighted in brain imaging studies where Δ9-THC and CBD activate different brain regions during tasks engaging verbal memory (206, 207), response inhibition (208), and emotional processing (196, 209–211). When given at appropriate doses, CBD counteracts Δ9-THC properties. Thus, CBD can modulate the functional effects of Δ9-THC (177, 178). Pre-clinical studies demonstrate that CBD decreases Δ9-THC-induced conditioned place aversion and social interaction of on operant behavior model (212, 213). In addition, CBD diminishes Δ9-THC-induced anxiety and psychotic-like symptoms in humans (214, 215). Together, this data clearly suggests that CBD limits Δ9-THC adverse effects. Thus, administered together, CBD might increase Δ9-THC clinical efficacy (216, 217). It has been established that unlike, Δ9-THC, CBD possesses therapeutic properties that could reduce withdrawal symptoms often present in individuals with addictive disorders (e.g., anxiety, psychotic, mood symptoms, insomnia, and pain). For example, a recent pre-clinical study from Hurd’s group aimed at assessing the effects of cannabinoids on opioid-seeking behaviors in rats indicates that while Δ9-THC potentiates heroin SA, CBD inhibits cue-induced heroin-seeking behaviors for up to 2 weeks following the last administration (218). In addition, CBD is well tolerated and has no gross effects on motor function (such as locomotor activity). CBD is also protects against damages caused by various substances; it reverses binge ethanol-induced neurotoxicity (219) and mitigates the cardiac effects of Δ9-THC (220, 221). Together this data illustrates the different, and sometimes opposite, neurobiological properties of the two main constituents of cannabis – CBD and Δ9-THC – that are linked to neural circuits which might play significant roles in addiction disorders. However, while numerous studies have highlighted the participation of the ECBS in the rewarding and addictive properties of drugs of abuse such as opioids, nicotine, and alcohol over the last decades, relatively few studies have focus on the impact of this system on addiction to psychostimulants.