New EEG devices The fifth and final area of necessary progress surrounds the development of a new class of BCI devices based on easy-to-use and esthetic EEG equipment. So far, laboratory experimentation has never required attention to issues like portability, esthetic design, conformity, certification, etc. Many current BCI applications exist in the form of software running on a personal computer; but many users will not accept the burden of a desktop PC and its screen to utilize a BCI. In addition, there is a need for a common implementation architecture to facilitate commercial take-up – and the field is taking steps toward standardization in the design of BCI (Cincotti et al., 2010). The merger of esthetic and engineering design is a key issue that any practical BCI for disabled people must overcome. Users don't want to look unusual– therefore, social acceptability is a key concern for them3. For this reason we expect new EEG technology based on dry electrodes and esthetic wireless helmets. Different teams have recently developed some prototypes of dry electrodes that overcome the need of gel, one of the main limitations of current EEG technology (Popescu et al., 2007). Moreover, different companies like Quasar Inc. (San Diego, USA) (Sellers et al., 2009), Emotiv Systems Inc. (San Francisco, USA), NeuroSky Inc. (San Jose, USA) (Sullivan et al., 2008), and Starlab (Barcelona, Spain) (Ruffini et al., 2007) are now commercializing dry electrodes, mainly for gaming. Although some doubts exist about the kind of physiological signals these systems actually exploit for control, they are definitely pushing the field forward.