Methods Funded by a grant from the Agency for Health Care Policy and Research (AHCPR), a multidisciplinary study team from a major Midwest academic medical center conducted a systematic evaluation of care provided to mechanically ventilated patients in rural ICUs. The study team consisted of a pulmonologist, research nurse, ICU nurse, respiratory therapist, dietician and pharmacist, all with critical care experience. Seventy-eight hospitals met eligibility criteria: short-stay hospitals located in a Health Care Financing Administration (HCFA)-designated rural county with a critical care unit. Twenty of the 78 eligible rural Iowa hospitals were randomly selected and contacted. All hospitals contacted agreed to participate in the study and share patient and cost information. Enrollment was limited to 20 hospitals because of the extensive burden of data collection and multiple visits required to each participating facility during the 3-year study. The statistical power of the sample size was approved by the AHCPR. On the basis of HCFA definitions, two major categories of rural hospitals were identified. A hospital qualified as a rural referral hospital (RRH) if it was in a rural area and met specific criteria concerning bed size, referral patterns or case mix intensity. Seven of the 20 participating hospitals qualified as RRH and represented all the rural referral facilities in the state. The remaining 13 facilities enrolled were termed rural hospitals (RH), which had more limited bed capacities and resources. Hospital demographic characteristics were supplied by each participating hospital. These included ICU size, average daily census, equipment availability, ICU staff, physician mix, and the availability of specialists and support personnel, including respiratory, pharmacy and dietary professionals. The data collection tool was based on objective indicators established by the Task Force on Guidelines, Society of Critical Care Medicine [10]. Using these indicators as a guide, the university team of ICU specialists developed more specific standards based on current practice (Table 1). Standards were made more specific by establishing strict criteria defining the dose, frequency and time frame within which initiation of treatment was expected; for example, task force guidelines recommended measures such as nutritional support, stress ulcer prophylaxis and deep vein thrombosis prophylaxis. The team clarified these measures and included additional criteria. Team standards required that a complete nutritional assessment including the patient's protein and calorie requirements be documented within 72 h of admission to the ICU. Stress ulcer and deep vein thrombosis prophylaxis was required to be initiated by day 2 in the ICU, and minimum therapeutic levels of treatment were established. The tool reflects basic processes of ICU care that should be delivered regardless of available technological resources. The tool allowed evaluation of processes of care in seven major categories: laboratory assessments, nursing care, stomach ulcer protection, thrombosis protection, dietary management, ventilator management and ventilator weaning. Patient records were selected for team review by International Classification of Diseases (ICD)-9 procedure codes that reflected the presence of mechanical ventilation (96.72, ventilated for longer than 96 h; 96.71, ventilated for less than 96 h; 96.70, period of ventilation unspecified). The patients most desired for this assessment were those ventilated for longer than 96 h. This longer ventilation period allowed sufficient time to evaluate overall patient care management techniques and practice patterns and assured a more homogeneous group of patients between facilities and across time. In rural hospitals with under 100 beds, few patients met the criteria of ventilation for longer than 96 h. Consequently, in these facilities, the medical records of all patients with ventilation codes were reviewed. Three categories of patients that would be likely to provide limited evidence of ventilator management techniques were excluded from the study: (1) patients on a home ventilator admitted for pulmonary exacerbation or respite care; (2) postoperative patients requiring fewer than 6h of ventilation while anesthetic agents were reversed; and (3) patients shown to be brain dead shortly after admission but ventilated while treatment and organ donation discussions could be conducted with the family. For patients requiring re-admission to the ICU for ventilator support within the same hospital stay, only the first ventilated period was reviewed. Data were collected from medical records of 224 patients requiring mechanical ventilation while treated in 20 rural Iowa ICUs between 1992 and 1994. One hundred and eleven patients were managed at RRHs, whereas 113 were managed at RHs. Patient variables included age, sex, primary and secondary ICD-9 diagnoses, severity of illness as measured by Acute Physiology and Chronic Health Evaluation (APACHE) II, medical conditions resulting in difficult or complicated ventilation, admission source (home, emergency room, nursing home, hospital ward, or acute care facility), do not resuscitate (DNR) status, pay class or insurance coverage and discharge disposition (expired, home, skilled nursing facility, intermediate nursing care facility, other hospital and tertiary facility). For those patients transferred to the tertiary setting, the discharge disposition was also evaluated. A list of 10 medical conditions resulting in difficult or complicated ventilation was developed through consensus of a team of critical care specialists. This variable was monitored because the decision to select appropriate patients for tertiary transfer was considered a process of care. The conditions and related definitions are as follows. (1) Adult respiratory distress syndrome (ARDS) required diffuse bilateral infiltrates, PO2 divided by FiO2 < 200 (both required) and, if pulmonary artery catheter was in use, a wedge pressure < 18. (2) Status asthmaticus with hypercapnea despite adequate ventilation required diagnosis by the contact physician. (3) Neurologic catastrophe was defined by an acute deterioration in Glasgow coma score without a specific diagnosis for the decline. (4) Pneumothorax complicating ARDS or status asthmaticus required diagnosis by the contact physician or radiologist. (5) Multiple organ failure required diagnosis by the contact physician that two or more organs were in failure (respiratory failure was assumed in all patients requiring mechanical ventilation). (6) Sepsis syndrome with disseminated intravascular coagulopathy (DIC) or coagulopathy required sepsis as defined in Appendix A in nosocomial events and DIC/coagulopathy defined as a drop in platelet count by 25% from baseline and an increase in prothrombin time (PT) or presence of fibrin degradation products. (7) Ventilation with peak pressures > 50 and positive end-expiratory pressure (PEEP)> 15 was defined by these parameters. (8) Complex chest trauma involved documentation of flail chest or multiple rib fractures and cardiac or pulmonary contusions or extensive subcutaneous emphysemaor hemothorax. (9) Failure to wean required diagnosis by the contact physician. (10) Complex overdose was defined as overdose requiring treatment by dialysis. Outcome variables included length of stay, ventilation days, nosocomial events, discharge disposition, and survival. Patients with acute respiratory failure are at risk for a number of nosocomial events. Eighteen of these events were described by Pingleton [11] in her work on complications occurring in patients with acute respiratory failure and were incorporated into the data collection tool. A nosocomial event was defined as an event that occurred in the ICU that was not present or incubating at the time of admission. Definitions for each nosocomial event were developed from several sources and established by the review team. Definitions for infectious events were based on the Center for Disease Control (CDC) criteria. Definitions for mechanical events were based on Pingleton's publication, supporting references, criteria utilized by the risk management division at our institution or criteria developed through consensus of the critical care team. Events and associated definitions are provided in Appendix A. The study protocol was approved by the Internal Review Board of our academic medical center and deemed exempt from the need for informed consent.