regulation of AP-1 and down-regulation of NF-κB activity, however, exposure to heat killed (HK) Escherichia. coli MG1655 resulted in a dose-dependent increase in NF-κB activity without affecting AP-1. The cytokine profile revealed an up-regulation of the chemokine CXCL8 and the pro-inflammatory cytokines TNF, IL-2 and IL-6 following treatment with both PMA and HK E. coli, while the levels of the anti-inflammatory cytokine IL-10 were not affected by PMA but were significantly down-regulated by HK E. coli. AP-1 activation was significantly increased 2 h after PMA exposure and continued to increase thereafter. In contrast, NF-κB responded to PMA exposure by a rapid up-regulation followed by a subsequent down-regulation. Increased intracellular Ca2+ concentrations countered the down-regulation of NF-κB by PMA, while similar treatment with calcium ionophore resulted in a reduced NF-κB activity following induction with HK E. coli. In order to further study NF-κB activation, we considered two up-stream signalling proteins, PKC and Bcl10. Phosphorylated-PKC levels increased in response to PMA and HK E. coli, while Bcl10 levels significantly decreased following PMA treatment. Using an NF-κB activation inhibitor, we observed complete inhibition of IL-6 expression while CXCL8 levels only decreased by 40% at the highest concentration. Treatment of Jurkat T-cells with PMA in the presence of JNK-inhibitor suppressed both CXCL8 and IL-6 while PKC-inhibitor primarily decreased CXCL8 expression. Conclusion The present study shows that NF-κB regulated IL-6 but not CXCL8. This complex regulation of CXCL8 suggests that there is a need to further evaluate the signalling pathways in order to develop new treatment for diseases with elevated CXCL8 levels, such as AIDS and autoimmune diseases. Background Cytokines and chemokines are important in immune cell recruitment and in regulation of inflammatory responses [1]. T-cells produce a broad range of inflammatory mediators, including IL-2, IL-6, TNF and CXCL8, all of which are important in cell proliferation, differentiation, communication and initiation of inflammatory responses [2]. Elevated levels of pro-inflammatory cytokines and chemokines, such as TNF, IL-6 and CXCL8, are associated with several human diseases including cystic fibrosis [3-5], pulmonary fibrosis [6,7] and AIDS [8,9]. Induction of CXCL8 has been suggested to be mediated through NF-κB in cooperation with AP-1 [10,11], however the precise mechanism is not fully elucidated, and treatment strategies aimed at inhibiting CXCL8 have failed [12]. Persistent production of IL-6 and CXCL8 leads to chronic inflammation and enhanced survival of lymphocytes increasing serum cytokine/chemokine levels. This forms the basis of several autoimmune disorders including plasmacytosis and hyperplasia [13]. To develop viable CXCL8 based treatment strategies, it is necessary to identify the signalling pathways regulating CXCL8 and determine how this is coupled to NF-κB, AP-1 and IL-6. The signalling pathways leading to NF-κB and AP-1 activation are overlapping, where both are involved in the induction and regulation of cytokines/chemokines. NF-κB is activated in response to stress, such as oxidative stress, bacterial toxins, viruses and UV light [14], and is essential for differentiation, proliferation and survival of many cell types including T-lymphocytes [15]. AP-1 activation requires Fos (c-Fos, FosB, Fra-1, Fra-2) and Jun (c-Jun, v-Jun, JunB, JunD) through the formation of homo- and hetero-dimers [16,17], and regulates transcription of a broad range of genes involved in immune responses [18-21]. Both AP-1 and NF-κB binding sites have been identified in the promoter region of IL-6 and CXCL8 [12,22], however, the mechanism by which these interleukins are regulated in T-cells is still not clear. CXCL8 is a C-X-C chemokine with properties enabling it to recruit T-cells and basophils and to activate neutrophils and monocytes [23]. IL-6 is a cytokine that possesses both pro- and anti-inflammatory characteristics and that plays a key role in haematopoiesis and acute-phase responses [24,25]. The present study suggests that the regulation of CXCL8 and IL-6 is uncoupled. Using Jurkat T-cells exposed to PMA and heat killed (HK) Escherichia coli MG1655 in combination with inhibitors of NF-κB, JNK and PKC, we demonstrated that NF-κB regulates IL-6 expression while the regulation of CXCL8 more closely correlated to AP-1 activity. These results indicate that inhibition of NF-κB is not an effective strategy in countering the high CXCL8 activities in diseases such as cystic fibrosis, AIDS and pulmonary fibrosis. Results Regulation of AP-1 and NF-κB activation