2.3. MRI Safety and Image Compatibility Magnetic resonance imaging (MRI) is a technology developed in medical imaging that is probably the most innovative and revolutionary other than computed tomography. MR is a three-dimensional imaging technique used to image the protons of the body by employing magnetic fields, radio frequencies, electromagnetic detectors, and computers [90]. For millions of patients worldwide, MRI examinations provide essential and potentially life-saving information. Some devices, such as pacemakers and neurostimulators, have limitations related to MRI safety and may be contraindicated for use with MRI. Even more devices, such as stents, vena cava filters, and some types of catheters and guidewires, are safe for use with MRI but have limited MRI image compatibility. Some of these devices are simply not well-imaged under MRI. Others have properties that interfere with the MRI image by causing an image artifact (distortion) in the area in and around the device, limiting the effectiveness of MRI for assisting placement or diagnostic follow up on these implants. It may be contraindicated in certain situations because the magnetic field present in the MRI environment may, under certain circumstances, result in movement or heating of a metallic orthopaedic implant device. Metals that exhibit magnetic attraction in the MRI setting may be subject to movement (deflection) during the procedure. Both magnetic and non-magnetic metallic devices of certain geometries may also be subjected to heating caused by interactions with the magnetic field. Of secondary concern, is the possibility of image artifacts that can compromise the procedure and image quality. There are currently several researchers as well as an ASTM committee exploring methods for accurately assessing the MRI compatibility of implant devices. The primary focus of the research has been the measurement of implant movement in response to a magnetic field. Shellock and co-workers [91–93] conducted several studies in which the movement/deflection of various orthopaedic implants was measured in the high magnetic field (0.3–1.5 Tesla) region of MRI units. The results of these studies show no measurable movement of implants fabricated from cobalt, titanium and stainless steel alloys. The movemen/deflection of selected orthopaedic implants in a 3.0 Tesla MRI unit was also examined and it was found that devices fabricated from cobalt, titanium and stainless steel exhibited little or no movement/deflection [94]. Ferromagnetic metal will cause a magnetic field inhomogeneity, which, in turn, causes a local signal void, often accompanied by an area of high signal intensity, as well as a distortion of the image. They create their own magnetic field and dramatically alter precession frequencies of protons in the adjacent tissues. Tissues adjacent to ferromagnetic components become influenced by the induced magnetic field of the metal hardware rather than the parent field and, therefore, either fail to precess or do so at a different frequency and hence do not generate useful signal. Two components contribute to susceptibility artifact, induced magnetism in the ferromagnetic component itself and induced magnetism in protons adjacent to the component. Artifacts from metal may have varied appearances on MRI scans due to different type of metal or configuration of the piece of metal. In relation to imaging titanium alloys are less ferro-magnetic than both cobalt and stainless steel, induce less susceptibility artifact and result in less marked image degradation [94–96].