1. Introduction The goal of modern dentistry is to restore the patient to normal function, speech, health and aesthetics, regardless of the atrophy, disease, or injury of the stomatognathic system. Responding to this ultimate goal, dental implants are an ideal option for people in good general oral health who have lost a tooth (or teeth) due to periodontal disease, an injury, or some other reasons. Dental implants (considered as an artificial tooth root) are biocompatible metal anchors surgically positioned in the jaw bone (in other words, surgically traumatized bone) underneath the gums to support an artificial crown where natural teeth are missing. Using the root form implants (the closest in shape and size to the natural tooth root), the non-union (due to traumatization) bone healing period usually varies from as few as three months to six or more. During this period, osseointegration occurs. The bone grows in and around the implant creating a strong structural support, to which a superstructure will be attached later on by either cemetation or screw-tightening retaining technique. Today, titanium matrials (varied from commercially pure titanium ASTM Grades 1 through 4 or Ti-based alloys) are considered to be the most biologically compatible materials to vital tissue. Titanium materials are used preferentially in many of the more recent applications in maxillofacial, oral, neuro and cardiovascular-surgery, as well as gaining increasing preference in orthopedics. These facts indicate a superiority of titanium materials. Moreover, they have been successfully used for orthopedic and dental implants. Direct bony interface promised more longevity than previously used systems; hence, oral implantology gained significant additional momentum. Following the introduction of concept and practice of the osseintegration into restorative dentistry in the early1960s [1], completely edendulous mandibular arches in elderly patients received primary emphasis regarding the restoration of oral function. Following excellent long-term results in the treatment of completely edentulous arches, implant-supported fixed partial dentures and overdentures became common treatment modalities. The number of dental implants used in the United States ever increased an estimated four-fold from 1983 to 1987 [2], and it further increased 75% between 1986 and 1990 [3]. At the beginning of this century, it was reported that there were 25 dental implants manufacturers with marketing about 100 different dental implant systems with variety of diameters, lengths, surfaces, platforms, interfaces, and body shapes [4]. Significant differentiation and distinctions are based on (i) the implant/abutment interface, (ii) the body shape, and (iii) the implant-to-bone surface. This remarkable increased need and use of implant-treatments may result from the combined effect of a number of factors; including (1) aging population, (2) tooth loss related to age, (3) anatomic consequences of edentulism, (4) poor performance of removable prostheses, (5) psychologic aspects of tooth loss, (6) predictable long-term results of implant-supported prostheses, and (7) advantages of implant-supported prostheses [5]. Many aspects of biocompatibility profiles established for dental implants have been shown to depend on interrelated biomaterials, tissue, and host factors, being associated with either surface and bulk properties. In general, the biomaterial surface chemistry (purity and surface tension for wetting), topography (roughness), and type of tissue integration (osseous, fibrous, or mixed) can be correlated with shorter and longer term in vivo host responses. Additionally, the host environment has been shown directly influence the biomaterial-to-tissue interface zone specific to the local biochemical and biomechanical circumstances of healing and longer term clinical aspects of load-bearing function. The interaction at interface between recipient tissues and implanted material are limited to the surface layer of the implant and a few nanometers into the living tissues. The details of the interaction (hard or soft tissue) and force transfer that results in static (stability) or dynamic (instability or motion) conditions have also been shown to significantly alter the clinical longevities of intraoral device constructs [6]. In this review, several important requirements for successful dental implant systems will be firstly reviewed, and followed by variety of surface modifications and technology to accommodate the biological interaction at the interface between placed implant and receiving vital tissue. Within an increased predictability of dental implants, the same treatment modalities have come under consideration for growing patients [7]. However, there are special issues taken into account, due to growing hard tissue. Although extensive reviews on implants have been previously published [6,8,9], no integrated concerns can be found on dental implantology in growing patients. Accordingly, we added some special and uniqueness to this review with implant practices in growing patients.