Background Epidermal growth factor receptor (EGFR) is highly expressed in many malignancies, including head and neck cancer, lung cancer, and colorectal cancer[1]. Upregulated EGFR is correlated with both poor prognosis and increased metastatic potential in numerous epithelial malignancies[2,3]. Further investigation has recently revealed that, in patients with non-small cell lung cancer (NSCLC) with mutated EGFR, higher response rates and longer survival time could be achieved with the use of the EGFR tyrosine kinase inhibitor gefitinib. The mutations were centered on exon 18-21 of the EGFR tyrosine kinase domain and were mostly detected in Asian patients with NSCLC, which suggested that gefitinib played an important role in the Chinese population[4,5]. It has been reported that the mutation incidence in colorectal cancer (CRC) was approximately 0.34% to 3.00% in western countries [6,7]. In contrast, the mutation incidence was reported to be as high as 12% in a study from Japan of 33 patients with CRC[8]. However, the differences between Western and Eastern patients with CRC have not been clearly documented, and no data from Chinese patients with CRC are currently available. The K-ras gene is located downstream in the EGFR signal pathway. The Ras protein is activated transiently as a response to extracellular signals, such as growth factors, cytokines, and hormones that stimulate cell surface receptors. It can switch between an inactive state, in which the proteins are bound to guanosine-diphosphates, and an active state, in which conversion to guanosine-triphosphate (GTP) occurs. Mutant activated forms of Ras proteins have an impaired intrinsic GTPase activity, which renders the protein resistant to inactivation by regulatory GTPase-activating proteins[9]. Approximately 20% to 50% of patients with colorectal adenocarcinoma have a K-ras mutation, and 90% of the mutations were found in codons 12 and 13, followed by codon 61[10]. Studies have recently confirmed that a mutant K-ras gene could lead to resistance to cetuximab and panitumumab in metastatic CRC (mCRC), suggesting that K-ras status should be considered when selecting patients with mCRC as candidates for panitumumab or cetuximab monotherapy[11,12]. Mutations in both EGFR and K-ras will promote the progression of resistance to anti-EGFR targeting therapy. Limited data in the Chinese population prompted this study, which was performed to explore mutations in EGFR and K-ras gene in Chinese patients with CRC and provide evidence for the efficacy-prediction of EGFR targeting therapeutic strategies.