Since the introduction of the XL-I and the digitalization of experimental data, tremendous progress has been made in analysis software and method development. These software advances have enabled researchers to analyze AUC data with much higher quality than was available a decade ago. Sedimentation coefficient distributions (Stafford 1992; Schuck 2000; Demeler and van Holde 2004), molar mass distributions (Brookes et al. 2006; Brown and Schuck 2006; Brookes and Demeler 2007, 2008), interaction constants (Cao and Demeler 2008; Stafford and Sherwood 2004; Schuck 1998), particle size distributions with Angström resolution (Cölfen and Pauck 1997) and the simultaneous determination of size and shape distributions from sedimentation velocity experiments (Brookes and Demeler 2006; Brookes et al. 2006) are examples of sophisticated data analysis methods that are used routinely by AUC laboratories. Powerful software packages that combine these methods, such as Ultrascan (Demeler 2005), Sedfit/Sedphat (Schuck et al. 1998; Vistica et al. 2004) and Sedanal (Stafford and Sherwood 2004) are available free of charge. In particular, the source code for UltraScan is licensed under the GNU Public License (GPL) (http://www.gnu.org/copyleft/gpl.html), making it possible for other groups to make improvements or advances. These analysis programs are supported by workshops.