Conclusion We have developed a classification method that categorizes each PPI into one of four different types using association rule based classification (ARBC). The application of association rule mining over 354 known PPI domains using 14 properties yielded a total of 157 rules, which in turn discriminated the features of interaction sites for different PPI types and were used to generate a classification model to predict PPI types. Our ARBC approach performed competitively compared with conventional methods applied directly to the property values: for example, the work in [12] reported an accuracy of 91.8% for the classification of three types of interactions by directly applying SVM. Although it is not possible to make a direct comparison of their method with ours due to heterogeneity of the data set, this suggests that the processes of association rule generation and subsequent pruning do not incur a loss of relevant information. At the same time, our results demonstrated that we were able to considerably improve the accuracy of the prediction of PPI types through the use of structural domain information for the description of interaction interfaces, and also the use of secondary structure content. Although SSE content alone could not classify interaction sites with high accuracy, its incorporation with other properties improved the accuracy of classification. Our approach based on ARBC has a clear advantage over conventional methods because results are reported in terms of rules that are a quantitative description of properties and hence their interpretation is straightforward and simple. Thus, biologists can easily judge if a discovered rule is interesting or not. Analysis of common and unique properties together is a unique feature of our approach, unlike conventional classification methods which typically capture unique properties only. Common rules capture those properties which are common between PPI types. In particular enzyme inhibitor (ENZ) and non-enzyme inhibitor (nonENZ) interactions, both being non-obligate or transient, share more properties in common than with other types. As we have demonstrated, all these features produce descriptive rules, enabling their simple and powerful interpretation. We observed that the property distributions of homo-obligate interactions are similar to those of hetero-obligate interactions but distinct from those of non-obligate interactions. We found that obligate interactions have larger and more hydrophobic interaction sites than non-obligate interactions. Hydrophobic residues including Leu, Ala, and Val were found more frequently in obligate interactions whilst polar residues including Ser and Gly were present in non-obligate interactions. Charged residues (Glu, Asp, Lys, and Arg) were seen frequently in all interaction types. On the basis of a detailed analysis of association rules, it was observed that interactions between enzymes and their inhibitors were separated into several different structural subgroups. This may lead to the possibility of different subtypes of PPIs being involved in transient interactions. Our findings based on the interpretation of association rules are consistent with the description of obligate complexes in previous studies [17,12]. In future work we plan to improve our approach by incorporating additional properties such as energy functions and electric potentials for the generation of more accurate and meaningful association rules. The unique contribution of our work is the development of a novel methodology that analyzes specificities and commonalities for interaction types, and we intend to extend this to the prediction of interaction partner and interaction sites.