TRIP13-Deficient Meiocytes Undergo Homologous Chromosome Synapsis Despite the Presence of Unrepaired DSBs in Pachynema To better characterize the degree of meiotic progression in Trip13Gt/Gt spermatocytes, we immunostained chromosome spreads for SYCP3 and SYCP1, components of the axial/lateral elements and transverse filaments, respectively, of the synaptonemal complex (SC). Pachytene spermatocyte nuclei from postpubertal mutant testes could assemble normal SC cores and exhibited full synapsis of chromosomes as judged by colabeling of SYCP1 and SYCP3 along the full lengths of all autosomes (Figure 4A). Additionally, the X and Y chromosomes were normally synapsed at their pseudoautosomal region. More prepubertal (17.5 d postpartum) mutant spermatocytes contained asynaptic or terminally asynapsed chromosomes than age-matched controls (62.5% versus 25%, respectively; Figure 4B). We attribute this to a delay in the first wave of postnatal spermatogenesis (Figure 2D and 2E), likely related to systemic developmental retardation (Figure 2A and 2B). Nevertheless, since Trip13Gt/Gt spermatocytes progress to pachynema with no gross SC abnormalities, and oocytes were eliminated soon after birth (a characteristic of DNA repair mutants [13]), this suggested that unrepaired DSBs are responsible for eventual meiotic arrest and elimination. Figure 4 Immunohistochemical Analysis of Pachytene Spermatocyte Chromosomes Surface-spread chromosomes were immunolabeled with the indicated antibodies and fluorophores. As indicated in the upper right of each panel, cells were from wild type (WT, either +/+ or Trip13Gt/+) or Trip13Gt/Gt (Mut). There were no differences seen between heterozygotes and +/+ spermatocytes. (A) A mutant pachytene nucleus with full synapsis. Areas of SYCP1/SYCP3 colabeling are yellow. (B–E) Spermatocytes nucleus from 17.5 d postpartum mutant. Asynapsed chromosomes or regions of chromosomes are indicated by white and yellow arrows, respectively. Unlike the normal distribution in wild-type pachytene spermatocytes (C), BLM foci are present on synapsed pachytene chromosomes in the mutant (D). RAD51 foci, which are abundant earlier in prophase, disappear from autosomes in wild-type pachytene nuclei (E) and the bulk of staining is over the XY body (arrow). (F) RAD51 persists on the synapsed mutant chromosomes (arrows). (G) H2AX phosphorylation is restricted to the XY body in WT. (H) In addition to a large area of γH2AX staining (arrow) over the XY body, there is extensive autosomal H2AX phosphorylation (arrows). (I, J) Note that in wild-type pachytene spermatocytes, TOPBP1 is present only over the XY body (yellow arrow). In the mutant (J), an arrow denotes one area of intensive staining that may be over the sex chromosomes, but many other chromosome cores are positively stained. (K, L) RPA persists along synapsed cores in the mutant, not WT. (M, N) Arrows indicate examples of MLH3 foci on SCs. (O) In WT late pachytene spermatocytes, RAD51 is present only at background levels. (P) As in (F), extensive RAD51 staining delineates SCs in mutant pachytene nuclei (indicated by white arcs). MLH1 foci colocalize with these tracts (arrows) at the typical 1–2 foci per chromosome as in (M). To elucidate the cause of meiotic arrest, we analyzed meiotic chromosomes with a variety of markers that are diagnostic of recombination and synapsis. Recombination in Trip13Gt/Gt spermatocytes appeared to initiate normally as judged by the presence of γH2AX in leptonema (Figure S2A and S2B), which reflects the presence of meiotically induced DSBs [18]. RAD51 and/or DMC1, components of early recombination nodules (ERNs), was also present as abundant foci in Trip13Gt/Gt zygotene spermatocytes (unpublished data; the anti-RAD51 antibody cross-reacts with DMC1), indicating that recombinational repair of DSBs is initiated. The cohesin complex, which is essential for completion and/or maintenance of synaptic associations, appeared to assemble normally as judged by immunolabeling for the meiosis-specific cohesins STAG3 (Figure S2C and S2D) and REC8 (unpublished data). Because yeast PCH2 localizes to telomeres in a Sir3p-dependent manner, we tested for possible telomere defects by immunolabeling for TRF2, a component of a protein complex that plays an essential role in telomere protection [19]. It was localized to telomeres of both fully synapsed and telomerically asynaptic mutant chromosomes (Figure S2E and S2F). Defects in DSB repair became apparent in pachynema upon probing of mutant spermatocyte nuclei with antibodies against molecules involved in various stages of recombination. In >99% of Trip13Gt/Gt chromosome spreads, BLM helicase (Figure 4C and 4D), RAD51/DMC1 (Figure 4E and 4F), γH2AX (Figure 4G and 4H), and TOPBP1 (Figure 4I and 4J) all persisted abnormally on synapsed chromosomes. For RAD51/DMC1, mutant pachytene spermatocytes contained 138 ± 6 foci (compared to 11 ± 3 foci in wild type, most of which were on the XY body), down from 218 ± 13 in zygonema (compared to 220 ± 13 foci in wild type). TOPBP1 is a DNA damage–checkpoint protein involved in ATM protein–dependent activation of ATR protein [20,21]. It binds sites of DSBs and unsynapsed regions of meiotic chromosomes [22,23]. BLM has been reported to colocalize with markers (RPA and MSH4) of recombination at sites distinct from those that become resolved as crossovers (CO) [24]. We therefore assessed the distribution of RPA, the ssDNA binding protein, which is normally present at focal sites of synapsing meiotic chromosomes before disappearing in mid-pachynema [25]. It is thought to bind D-loops of recombination intermediates [26]. RPA also persisted on pachytene mutant chromosomes (Figure 4K and 4L). These data indicate that unrepaired DSBs, or unresolved recombination intermediates, remain in pachynema and activate a DNA damage checkpoint system. It should be noted that chromosomes affected by meiotic sex chromosome inactivation (MSCI) and meiotic silencing of unpaired chromatin (MSUC) are heavily stained by antibodies for several DSB repair-associated molecules, including γH2AX. H2AX phosphorylation due to MSCI and MSUC is conducted by ATR, not ATM [27–29]. Since mutant chromosomes are fully synapsed, and MSUC is known to occur only as a result of asynapsis, the decoration of Trip13Gt/Gt chromosomes with DNA repair markers is probably attributable to incomplete DNA repair rather than transcriptional silencing. Consistent with the presence of rare (<1%) Trip13Gt/Gt pachytene spermatocytes devoid of persistent DNA repair markers, and testis histology showing some degree of postmeiotic progression (Figure 3G), we observed both diplotene nuclei that lacked autosomal RAD51/DMC1 and γH2AX (Figure S3A–S3D), and also metaphase I spreads with 20 bivalents (Figure S3E–S3F). Since Trip13Gt may not be a complete null, these diplotene and metaphase I spermatocytes might arise by virtue of having sufficient wild-type TRIP13.