Upon a closer look at this 2D-3D mapping illustrated in Figure 5, one can observe the following interesting aspects. First, multiple types of bit-patterns can be associated with a single type of 3D motif. For instance, there are 3 types of bit-patterns are mapped to an α-helical motif. Second, contrary to a commonly accepted belief that β-turns or β-sheets cannot be captured by maximally connected bit-patterns as defined earlier, our analysis shows that this belief does not stand. To illustrate this point, we take two examples. The first example, illustrated in Figure 6, corresponds to the β-turn structure. As shown in Figure 6(b), the β-turn formed by the first 10 Cα atoms of BBA5 can be captured by the maximally connected bit-pattern shown in Figure 6(a). The second example, shown in Figure 7, illustrates that a two turn β-sheet (Figure 7(b)) can also be captured by a bit-pattern (Figure 7(a)). Finally, not every type of bit-patterns can be mapped to a typical 3D motif. This might be attributed to our entropy-based criteria for selecting an "optimal" value of the parameter k in the clustering task.