RISO [15-17] improves SMILE in two aspects. First, instead of building the whole suffix tree for the input sequences, RISO builds a suffix tree only up to a certain level l, called a factor tree, which leads to a large space saving. Second, a new data structure called box-link is proposed to store the information about how to jump within the DNA sequences from one simple component (box) to the subsequent one in the structured motif. This accelerates the extraction process and avoids exponential time and space consumption (in the gaps) as in SMILE. In RISO, after the generalized factor tree is built, the box-links are constructed by exhaustively enumerating all the possible structured motifs in the sequences and are added to the leaves of the factor tree. Then the extraction process begins during which the factor tree may be temporarily and partially modified so as to extract the subsequent simple motifs. Since during the box-link construction, the structured motif occurrences are exhaustively enumerated and the frequency threshold is never used to prune the candidate structured motifs, RISO needs a lot of computation during this step.