Figures 8(b)–(e) plot the time for approximate matching as a function of different parameters. We set the default quorum to 12% (q = 127, out of |S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@| = 1062 sequences), the default gap ranges to [12,22], the default simple motif length to l = 6 (NNNNNN), and the default number of components k = 2 (e.g., NNNNNN[12,22]NNNNNN). Figure 8(b) shows how increasing gap ranges effect the running time; for gap range [8,26] between the two motif components, EXMOTIF is 2–3 times faster than RISO. In Figure 8(c), we increase the numbers of arbitrary substitutions allowed for each simple motif; a pair (ε1, ε2) on the x-axis denotes that ε1 substitutions are allowed for motif component M1, and ε2 for M2. We can see that EXMOTIF is always faster than RISO. It is 9 times faster when only frequencies are reported, and it can be up to 5 times faster then full occurrences are reported, though for some cases the difference is slight.