Several algorithms [8, 12, 15–18] exist for approximate pattern matching. For consistency, we used Sellers' dynamic programming algorithm [26], as implemented in SMARTFINDER, to extract the pos-lists for all simple motifs with approximate matches. This algorithm is not optimal and it can be replaced by more efficient ones [16-18]. Since we allow a specific Levenshtein distance [8] (i.e., insertions, deletions and substitutions) between the occurrences and the motif, the length of the occurrences can be different from the component length |Mi|. Thus we augment the pos-list to explicitly store the end position, in addition to the start position, for each occurrence. Figure 7(b) shows how the pos-list joins work for approximate matches of simple motifs. In the structured motif from Table 4, we consider the exact matches of GC and CAT, and the approximate matches of TTA within Levenshtein distance of 1. Each column in (b) shows the pos-list of a simple motif: the left sub-column is a list of its start positions and the right sub-column is a list of its end positions. We first join the pos-lists of TTA and CAT, checking for gap range [1,4]. We compare the end positions of TTA and the start positions of CAT and find that the pairs (9,12), (10,12), (10,15), and (11,15) all lie within the gap range (indicated by the links), and thus the pairs, (7, 10), (8, 9), (8, 10) and (8, 11) are retained in the resulting pos-list. Likewise (5, 6) is in the final pos-list, since after comparing the end position of GC, 6, with the start position of TTA, 7 and 8, we find d = 7 - 6 - 1 = 0 ∈ [0,1] and d = 8 - 6 - 1 = 1 ∈ [0, 1].