Figure 13(a)–(d) show the results. Here we do not allow missing components. As noted before, we may find overlapping occurrences if a negative gap is present in a motif. Figure 13(a) shows how the running time varies with the sum of the number of occurrences of the simple motifs in each of the 100 random motifs. For clarity, each point reflects the average time for the number of occurrences in the given range on the x-axis. For example, the first point on the x-axis [0, 1) corresponds to the case when there are between 0 and 1 million occurrences found. The general trend is that it takes more time as the number of occurrences increases. Figure 13(b) shows the time with respect to the number of occurrences of the whole structured motif (again, for clarity, only average times are plotted for occurrences in the given ranges in the x-axis). We observe that the time increases slightly with increase in the occurrences. In general, the times are more sensitive to the number of intermediate (simple) occurrences. Figure 13(c) shows the effect of the number of simple components in the structured motif. Each point shows the average time over all motifs having the given number of simple motifs. Here again the time increases with increasing components. Finally Figure 13(d) shows the impact of the number of IUPAC symbols in the structured motifs; the trend being that the more the symbols the more time it takes to search. We also observe that the approaches scale linearly, on average, with respect to the different parameters. Also SMOTIF remains about 5–10 times faster than SMARTFINDER over all these experiments.