Two distinct patterns We consider now two patterns V and W instead of one and want to study the joint distribution of SN (V) and SN (W) their corresponding pattern statistics. With a similar argument as in section "delta method", it is easy to show that ℒ ( [ S N ( V ) S N ( W ) ] ) ≃ N ( [ S ( V ) S ( W ) ] , [ σ V 2 σ V , W σ V , W σ W 2 ] )       ( 29 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFsectdaqadaqaamaadmaabaqbaeqabiqaaaqaaiabdofatnaaBaaaleaaieqacqGFobGtaeqaaOGaeiikaGIaemOvayLaeiykaKcabaGaem4uam1aaSbaaSqaaiab+5eaobqabaGccqGGOaakcqWGxbWvcqGGPaqkaaaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaeS4qISJae8xdX70aaeWaaeaadaWadaqaauaabeqaceaaaeaacqWGtbWucqGGOaakcqWGwbGvcqGGPaqkaeaacqWGtbWucqGGOaakcqWGxbWvcqGGPaqkaaaacaGLBbGaayzxaaGaeiilaWYaamWaaeaafaqabeGacaaabaacciGae03Wdm3aa0baaSqaaiabdAfawbqaaiabikdaYaaaaOqaaiab9n8aZnaaBaaaleaacqWGwbGvcqGGSaalcqWGxbWvaeqaaaGcbaGae03Wdm3aaSbaaSqaaiabdAfawjabcYcaSiabdEfaxbqabaaakeaacqqFdpWCdaqhaaWcbaGaem4vaCfabaGaeGOmaidaaaaaaOGaay5waiaaw2faaaGaayjkaiaawMcaaiaaxMaacaWLjaGaeiikaGIaeGOmaiJaeGyoaKJaeiykaKcaaa@6F1A@ where σV (resp. σW) is the standard deviation σ for the pattern V (resp. W) and where σ V , W =   t ∇ F V ε ( E ) × C × ∇ F W η ( E ) ln ⁡ ( 10 ) F V ε ( E ) × ln ⁡ ( 10 ) F W η ( E )       ( 30 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFdpWCdaWgaaWcbaGaemOvayLaeiilaWIaem4vaCfabeaakiabg2da9maalaaabaGaeeiiaaYaaWbaaSqabeaaieGacqGF0baDaaGccqGHhis0cqWGgbGrdaqhaaWcbaGaemOvayfabaGae8xTdugaaOGaeiikaGccbeGae0xrauKaeiykaKIaey41aqRae03qamKaey41aqRaey4bIeTaemOray0aa0baaSqaaiabdEfaxbqaaiab=D7aObaakiabcIcaOiab9veafjabcMcaPaqaaiGbcYgaSjabc6gaUjabcIcaOiabigdaXiabicdaWiabcMcaPiabdAeagnaaDaaaleaacqWGwbGvaeaacqWF1oqzaaGccqGGOaakcqqFfbqrcqGGPaqkcqGHxdaTcyGGSbaBcqGGUbGBcqGGOaakcqaIXaqmcqaIWaamcqGGPaqkcqWGgbGrdaqhaaWcbaGaem4vaCfabaGae83TdGgaaOGaeiikaGIae0xrauKaeiykaKcaaiaaxMaacaWLjaWaaeWaaeaacqaIZaWmcqaIWaamaiaawIcacaGLPaaaaaa@6CD8@ where ε   ( resp .   η ) = { + if pattern  V   ( resp .  W )  is over-represented − if pattern  V   ( resp .  W )  is unter-represented .       ( 31 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF1oqzcqqGGaaicqGGOaakcqqGYbGCcqqGLbqzcqqGZbWCcqqGWbaCcqGGUaGlcqqGGaaicqWF3oaAcqGGPaqkcqGH9aqpdaGabeqaauaabaqaciaaaeaacqGHRaWkaeaacqqGPbqAcqqGMbGzcqqGGaaicqqGWbaCcqqGHbqycqqG0baDcqqG0baDcqqGLbqzcqqGYbGCcqqGUbGBcqqGGaaicqWGwbGvcqqGGaaicqGGOaakcqqGYbGCcqqGLbqzcqqGZbWCcqqGWbaCcqqGUaGlcqqGGaaicqWGxbWvcqGGPaqkcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqGVbWBcqqG2bGDcqqGLbqzcqqGYbGCcqqGTaqlcqqGYbGCcqqGLbqzcqqGWbaCcqqGYbGCcqqGLbqzcqqGZbWCcqqGLbqzcqqGUbGBcqqG0baDcqqGLbqzcqqGKbazaeaacqGHsislaeaacqqGPbqAcqqGMbGzcqqGGaaicqqGWbaCcqqGHbqycqqG0baDcqqG0baDcqqGLbqzcqqGYbGCcqqGUbGBcqqGGaaicqWGwbGvcqqGGaaicqGGOaakcqqGYbGCcqqGLbqzcqqGZbWCcqqGWbaCcqqGUaGlcqqGGaaicqWGxbWvcqGGPaqkcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG1bqDcqqGUbGBcqqG0baDcqqGLbqzcqqGYbGCcqqGTaqlcqqGYbGCcqqGLbqzcqqGWbaCcqqGYbGCcqqGLbqzcqqGZbWCcqqGLbqzcqqGUbGBcqqG0baDcqqGLbqzcqqGKbazaaaacaGL7baacqGGUaGlcaWLjaGaaCzcamaabmaabaGaeG4mamJaeGymaedacaGLOaGaayzkaaaaaa@AC70@ And after using results of sections "single pattern" and "under-represented pattern" we finally get σ V , W = ( Q V ε Q W η ) × (   t ∇ G V × C × ∇ G W )       ( 32 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFdpWCdaWgaaWcbaGaemOvayLaeiilaWIaem4vaCfabeaakiabg2da9maabmaabaGaemyuae1aa0baaSqaaiabdAfawbqaaiab=v7aLbaakiabdgfarnaaDaaaleaacqWGxbWvaeaacqWF3oaAaaaakiaawIcacaGLPaaacqGHxdaTdaqadaqaaiabbccaGmaaCaaaleqabaGaemiDaqhaaOGaey4bIencbeGae43raC0aaSbaaSqaaiabdAfawbqabaGccqGHxdaTcqGFdbWqcqGHxdaTcqGHhis0cqGFhbWrdaWgaaWcbaGaem4vaCfabeaaaOGaayjkaiaawMcaaiaaxMaacaWLjaWaaeWaaeaacqaIZaWmcqaIYaGmaiaawIcacaGLPaaaaaa@550C@ where QVε MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGrbqudaqhaaWcbaGaemOvayfabaacciGae8xTdugaaaaa@30E7@ (resp. W) and GV (resp. W) are the constant Q (Q+ and Q-) and the vector G for the pattern V (resp. W).