Appendix C We give here the complete expression of σ for a single pattern in the special case of an order m = 0 homogeneous Markov model of parameter μ. The MLE of μ is given by μ N = N 1 n       ( 76 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF8oqBdaWgaaWcbaacbeGae4Nta4eabeaakiabg2da9maalaaabaGae4Nta40aaSbaaSqaaiabigdaXaqabaaakeaacqWGUbGBaaGaaCzcaiaaxMaacqGGOaakcqaI3aWncqaI2aGncqGGPaqkaaa@3976@ where N1 is the frequency of all letters. A Gaussian approximation gives L MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbnf2C0vMCJfMCKbaceiGaa8htaaaa@394B@ (N1) ≃ N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@ (E1, C1,1)     (77) with E1 = nμ and, for all a, b ∈ A MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFaeFqaaa@3821@, C1,1 (a, b) = nμ (a) I MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=Hi8jbaa@3894@a = b - nμ(a) × nμ(b)     (78) We have also P ( N ) = 1 n h ∏ a ∈ A N 1 ( a ) A 1 ( a )       ( 79 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqWGqbaucqGGOaakieqacqWFobGtcqGGPaqkcqGH9aqpdaWcaaqaaiabigdaXaqaaiabd6gaUnaaCaaaleqabaGaemiAaGgaaaaakmaarafabaGae8Nta40aaSbaaSqaaiabigdaXaqabaGccqGGOaakcqWGHbqycqGGPaqkdaahaaWcbeqaaiabdgeabnaaBaaameaacqaIXaqmaeqaaSGaeiikaGIaemyyaeMaeiykaKcaaaqaaiabdggaHjabgIGioJWaaiab+bq8bbqab0Gaey4dIunakiaaxMaacaWLjaGaeiikaGIaeG4naCJaeGyoaKJaeiykaKcaaa@5594@ which implies for all a ∈ A MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFaeFqaaa@3821@ that ∂ P ( N ) ∂ N 1 ( a ) = A 1 ( a ) N 1 ( a ) ︸ G 1 ( a ) × P ( N )       ( 80 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabgkGi2kabdcfaqjabcIcaOGqabiab=5eaojabcMcaPaqaaiabgkGi2kab=5eaonaaBaaaleaacqaIXaqmaeqaaOGaeiikaGIaemyyaeMaeiykaKcaaiabg2da9maalaaabaGaemyqae0aaSbaaSqaaiabigdaXaqabaGccqGGOaakcqWGHbqycqGGPaqkaeaadaagaaqaaiab=5eaonaaBaaaleaacqaIXaqmaeqaaOGaeiikaGIaemyyaeMaeiykaKcaleaacqWFhbWrdaWgaaadbaGaeGymaedabeaaliabcIcaOiabdggaHjabcMcaPaGccaGL44paaaGaey41aqRaemiuaaLaeiikaGIae8Nta4KaeiykaKIaaCzcaiaaxMaacqGGOaakcqaI4aaocqaIWaamcqGGPaqkaaa@5687@ So finally we get σ ≃ Q   t G 1 × C 1 , 1 × G 1       ( 81 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFdpWCcqWIdjYocqWGrbqudaGcaaqaaiabbccaGmaaCaaaleqabaacbiGae4hDaqhaaGqabOGae03raC0aaSbaaSqaaiabigdaXaqabaGccqGHxdaTcqqFdbWqdaWgaaWcbaGaeGymaeJaeiilaWIaeGymaedabeaakiabgEna0kab9DeahnaaBaaaleaacqaIXaqmaeqaaaqabaGccaWLjaGaaCzcaiabcIcaOiabiIda4iabigdaXiabcMcaPaaa@44E0@ where Q is either defined by equation (24) if the pattern is over-represented or by equation (28) if under-represented.