The distribution bias caused by the edge effects can be addressed in two different routes. On the one hand it can be modeled and discounted in the final results, as we have done in previous work [14]. Specifically, see Figure 3 of that report for a representation of the (biased) null distribution obtained for different sized alphabets. The alternative solution, which we have also pursued [6] is to identify a Boolean implementation of Universal Sequence Maps, designated as bUSM, which removes the source of distance overestimation at each of the of the scales accommodated by the numerical resolution of the computing environment being used. That report also offers a detailed algebraic description of the causes for the similarity over-estimation for metrics based maximum distances at any dimension (derived from equation 6 in [3]). Neither of those two solutions described, however, helps representing the density distribution of individual sequences such that the sequences themselves can be compared without having to return to the pair-wise distances between their units. The fundamental attraction of such a solution, which we only partially succeeded in [15] using Gaussian Parzen kernels, would be that it captures the fundamental characteristics of the sequence, such as its information content.