As in previous methodological developments associated with this technique, the more conventional, Markovian, solutions emerge as special formulations of the proposed novel methodology. For example, using very large smoothing parameters, S~ +∞, will exactly identify a Markov transition table of order L-1. The development of this kernel comes in the sequence of generalizing it beyond non-nucleotide alphabets and then screening different scales to describe its global entropic properties. Each step in this progression came with adjustments or reinterpretations of the original CGR procedure. This one is no exception and a more balanced, fully self-referenced, solution to the seeding of the iterative procedure was found that suggests that CGR/USM coordinates may best be sought as steady state solutions. However, for all but the shortest sequences this is of no computational consequence. Finally, a software library in a user-friendly programming language (Matlab code has a high-level pseudo-language appearance) is disseminated with this report to facilitate both independent use of the scale variant density distributions and further development of the method itself.