Gene expression provides evidence for large numbers of alternatively spliced genes [4-10]. The most reliable high throughput evidence for alternative splicing comes from full length cDNAs, which are limited in coverage across all biological states. Expressed Sequence Tags (ESTs) supplement the coverage of full length cDNAs but still fail to capture all expressed forms [11,12]. Genomic sequence patterns can potentially be used to identify alternative splicing in less commonly expressed genes and recent work has focused on developing computational methods to predict alternative splicing without direct evidence of gene expression. This work is divided into two types: explicit and implicit alternative splicing prediction.