Multiple motifs Here we give extensions to address the issue of multiple motifs existing in a set of sequences. Discovery of distinct multiple motifs, such as sets of binding sites for two different transcription factors, can be done iteratively by first locating a single optimal motif, masking it out from the problem instance, and then looking for the next one. We mask the previous motif by deleting its solution vertices from the original graph, and then reapplying the LP/DEE techniques to locate the next optimal solution and its corresponding motif. To identify multiple occurrences of a motif in some of the input sequences, it is possible to iteratively solve several ILPs in order to find multiple near-optimal solutions, corresponding to the best cliques of successively decreasing total weights. At iteration t, we add t - 1 constraints to the ILP formulation so as to exclude all previously discovered solutions: ∑ u ∈ S k x u ≤ N − 1 for  k = 1 , ... , t − 1 ,       ( 10 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeqacaaabaWaaabuaeaacqWG4baEdaWgaaWcbaGaemyDauhabeaakiabgsMiJkabd6eaojabgkHiTiabigdaXaWcbaGaemyDauNaeyicI4Saem4uam1aaSbaaWqaaiabdUgaRbqabaaaleqaniabggHiLdaakeaacqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWGRbWAcqGH9aqpcqaIXaqmcqGGSaalcqGGUaGlcqGGUaGlcqGGUaGlcqGGSaalcqWG0baDcqGHsislcqaIXaqmcqGGSaalaaGaaCzcaiaaxMaadaqadiqaaiabigdaXiabicdaWaGaayjkaiaawMcaaaaa@5202@ where Sk contains the optimal set of vertices found in iteration k. This requires that the new solution differs from all previous ones in at least one graph part. We note that to use this type of constraint for the basic formulation of the motif finding problem, the DEE methods given above have to be modified so as not to eliminate nodes taking part in near-optimal but not necessarily optimal solutions. For the subtle motifs problem, existing DEE methods (e.g., [17]) only eliminate nodes and edges based on whether they can take part in any clique in the graph, and thus constraint 10 can be immediately applied to iteratively find cliques of successively decreasing weight.