Background One approach to resolving some of the in vivo functions of alpha-crystallin is to generate animal models where one or both of the alpha-crystallin gene products have been eliminated. In the single alpha-crystallin knockout mice, the remaining alpha-crystallin may fully or partially compensate for some of the functions of the missing protein, especially in the lens, where both alphaA and alphaB are normally expressed at high levels. The purpose of this study was to characterize gross lenticular morphology in normal mice and mice with the targeted disruption of alphaA- and alphaB-crystallin genes (alphaA/BKO).