Cographs are another well-studied graph family [20]. A cograph can be characterized by an absence of an induced subgraph which is a path of length four (P4), where the length is the number of nodes in the path. Thus, the diameter of a connected cograph is at most two. Subsequently, connected cographs are dense and cliquish, consistently with the assumption made by algorithms that delineate protein complexes. What makes cographs even more attractive is that for every cograph there exists a Boolean expression which describes all the maximal cliques in the graph. (In terms of modular decomposition used in [16] it means that a cograph can be decomposed by modular decomposition without leaving non-trivial non-decomposable prime module.) This Booolean expression describes in a compact and hierarchical way all the possible variants of protein complex within a functional group.