3.4 Algorithm The simplest way to compute ℙ(Hn ≥ a) is to use the algorithm 2 in our particular case. As the number of non zero terms in R is then a2, the resulting complexity is O(n × a2). Using the proposition 4, it possible to get the same result a bit faster on very long sequence by computing the first two largest eigenvalues magnitudes λ and ν (complexity in O(a2) with Arnoldi algorithms) and to use them to compute a p-value. As the absolute error is in O(να) we obtain a require ε error level using a α proportional to log(ε)/log(ν) which results in a final complexity in O(log(ε)/log(ν) × a2). Unfortunately, this last method requires to use delicate linear algebra techniques and is therefore more difficult to implement. Another better possibility is to use the corollary 5 to get the following fast and easy to implement algorithm: algorithm 3: local score p-value x a real column vector of size a, (pi)i≥1 and (λi)i≥3 to sequences of real and i an integer initialization x = [g(a),...,g(1)]', p1 = g(a), and i = 0 main loop while (i