Discussion: As a working hypothesis, we proposed that levels of autoantibodies to p53 would reflect tumour behaviour. However, we found that the presence or absence of p53 autoantibodies was not predictive of presence or absence of recurrent disease. There was an equivalent incidence of active disease at the time of sampling in both the autoantibody-negative and autoantibody-positive groups, these being 25.2 and 28.7%, respectively. Thus, humoral immune activity against p53 appeared to be relatively restricted to a subgroup of patients in whom, once an autoantibody response had been generated, antibody was likely to persist regardless of tumour behaviour. Conversely, where no detectable p53 autoantibody was present at the time of primary diagnosis, these patients remained similarly negative for antibody, irrespective of subsequent disease activity (Table 3). In contrast to shed markers that correlate with tumour mass, such as CA15.3 for cancer of the breast, any tumour-related immune response will be subject to complex regulation. Autoantibody responses to p53 will require appropriate primary immunization; initial low-dose antigen exposure may induce immune tolerance and lack of response. Higher antigen doses may activate either antibody-mediated immunity, or cellular immunity. In breast cancer patients, our results suggest that, once an active humoral response against p53 is established, then this remains active. This persistent humoral reaction may be driven by persistent antigenic stimulation by p53 protein derived from overexpression of p53 at distant metastatic sites; alternatively, irradiated normal tissue may be a source of continued antigenic stimulation, because a long-term side effect of radiation therapy is an increased expression of p53 in normal breast tissue that persists for several years [12]. Since the great majority of our total patient cohort had received radiotherapy, humoral immunity to p53 associated with primary disease might persist, even in those patients who enter remission, due to tumour-independent antigenic stimulation. Loss of p53 function is known to correlate with loss of efficacy of cancer therapy in vivo [13,14]. This raised the possibility that autoantibodies to p53 that develop during follow up might indicate those patients whose tumor has become resistant to therapy. However, the present results show that, if no immunity has been generated at the time of primary diagnosis, then later immunity is unlikely to occur. This corresponds to the finding that expression of p53 antigen in biopies of locally advanced breast cancer did not correlate with drug resistance [15,16]. Overall, the present observations show that screening for p53 autoantibody status is not informative on residual tumour activity, or on therapeutic responsiveness. We conclude that the potential value of p53 autoantibody screening in patients with breast cancer is limited to the prognostic information obtained at diagnosis.