Discussion The expression of ERC4, ERD3 and ERD5 variant messenger RNAs relative to WT-ER messenger RNA expression within adjacent normal and neoplastic human breast tissues was investigated using previously described semi-quantitative reverse transcription PCR assays [18,19,24]. These assays allow the determination of the expression of ER-α variant messenger RNA relative to WT-ER messenger RNA using a very small amount of starting material, and offer the advantage of allowing investigators to work with histopathologically well characterized human breast tissue regions. It should be noted, however, that the sensitivities of the assays used in this study differed from each other. The triple-primer PCR assay has previously been set up to allow the determination of ERC4 relative expression in tumor samples with very low ER levels, as measured by ligand-binding assay [24]. We showed that, in samples with a detectable level of ERC4 messenger RNA using a standardized RNAse protection assay, the relative expression of this variant to WT-ER messenger RNA expression was similar to the relative expression of ERC4 PCR product obtained after triple-primer PCR [24]. Triple-primer PCR assay applied to the detection of ERC4 messenger RNA in 18 matched normal and tumor breast tissues gave a measurable value of expression in 36 out of the 36 samples studied. This contrasts with the detection of 30 out of 36 and 33 out of 36 obtained using ERD3-specific and ERD5-specific primers, respectively. These differences in sensitivity probably result from different primer set efficiencies under our experimental conditions. A higher ERC4 messenger RNA relative expression in tumor components compared with the normal adjacent tissue component has been observed in the ER-positive/PR-positive subgroup. This result is in agreement with our previous data [19] obtained by comparing ERC4 messenger RNA expression between independent normal reduction mammoplasty samples and a group of ER-positive/PR-positive breast tumors. Even though a higher ERC4 messenger RNA relative expression was observed in the tumor component of 12 out of 18 cases, this difference did not reach statistical significance. This absence of statistically significant differences might result from the low number of matched cases studied or from the different biology of ER-negative cases. Further studies are needed to clarify this issue and to draw any conclusion regarding the expression of ERC4 messenger RNA in ER-negative samples. ERC4 variant messenger RNA has previously been shown [26] to be more highly expressed in ER-positive tumors that show poor prognostic characteristics (presence of more than four axillary lymph nodes, tumor size >2 cm, aneuploid, high percentage S-phase cells) than in ER-positive tumor with good prognostic characteristics (absence of axillary lymph node, tumor size <2 cm, diploid, low percentage S-phase cells). Moreover, in that previous study, a higher ERC4 messenger RNA expression was also observed in ER-positive/PR-negative tumors, as compared with ER-positive/PR-positive tumors. interestingly, we have also recently reported similar levels of expression of ERC4 messenger RNA in primary breast tumors and their concurrent axillary lymph node metastases [24]. Taken together, these data suggest that the putative role of the ERC4 variant might be important at different phases of breast tumorigenesis and tumor progression; alteration in ERC4 messenger RNA expression and resulting modifications in ER signaling pathway probably occur before breast cancer cells acquire the ability to metastasize. Transient expression assays revealed that the protein encoded by ERC4 messenger RNA was unable to activate the transcription of an estrogen responsive element-reporter gene or to modulate WT-ER protein activity [17]. The biologic significance of the changes observed in ERC4 messenger RNA expression during breast tumorigenesis and tumor progression therefore remains unclear. A trend toward a higher relative expression of ERD3 messenger RNA in the normal breast tissue components compared with adjacent neoplastic tissue was found (10 out of 13 cases), which reached statistical significance when the ER-positive subgroup only was considered. These data are in agreement with the recently published report of Erenburg et al [20] who showed a decreased relative expression of ERD3 messenger RNA in neoplastic breast tissues and breast cancer compared with independent reduction mammoplasty and breast tumor. Transfection experiments performed by those investigators showed that the activation of the transcription of the pS2 gene by estrogen was drastically reduced in the presence of increased ERD3 expression. Moreover, ERD3 transfected MCF-7 human breast cancer cells had a reduced saturation density, exponential growth rate and in vivo invasiveness, as compared with control cells. These data led the authors to hypothesize that the reduction of ERD3 expression could be a prerequisite for breast carcinogenesis to proceed. They suggested that if high levels of ERD3 could attenuate estrogenic effects in normal breast tissue, low levels might lead to an excessive and unregulated mitogenic action of estrogen. We observed a significantly higher relative expression of ERD5 messenger RNA in breast tumor components compared with matched adjacent normal breast tissue. These data confirm our previous observations [18] performed on unmatched normal and neoplastic human breast tissues. Upregulated expression of this variant has already been reported in ER-negative/PR-positive tumors, as compared with ER-positive/PR-positive tumors [15,27], suggesting a possible correlation between ERD5 messenger RNA expression and breast tumor progression. Interestingly, ERD5 messenger RNA can be detected in human pituitary adenomas, but not in normal pituitary samples [28]. This underscores the putative involvement of this ER variant in other tumor systems. Even though it has been suggested that ERD5 could be related to the acquisition of insensitivity to antiestrogen treatment (ie tamoxifen) [29,30], accumulating data refute a general role for ERD5 in hormone-resistant tumors [14,25,31,32]. Only ER-positive pS2-positive tamoxifen resistant tumors have been shown to express significantly higher levels of ERD5 messenger RNA, as compared with control tumors [33]. Taken together, these data suggest that the exact biologic significance of ERD5 variant expression during breast tumorigenesis and breast cancer progression, if any, remains unclear. Among all the articles published so far on ER variants, only one has investigated ER variant expression between normal and neoplastic matched samples. Okada et al [33] recently reported a study performed on 15 cases. They observed an apparent difference in ER variant messenger RNA expression between adjacent normal and tumor samples. That study was performed using a less sensitive PCR approach, however, because PCR products were stained using ethidium bromide, and no attempt was made to quantify ER variant messenger RNA expression relative to WT-ER messenger RNA expression. In conclusion, we have shown that the relative expression of ERC4 and ERD5 variant mRNAs was increased in human breast tumor tissue, as compared with normal adjacent tissue, whereas the expression of ERD3 variant messenger RNA was decreased in breast tumor tissues. These results, which confirm previous data obtained on independent human breast tissue samples [18,19], suggest that the expressions of several ER-α variant messenger RNAs are deregulated during human breast tumorigenesis. Further studies are needed to determine whether these changes are transposed at the protein level. Only the use of specific antibodies that are able to recognize specifically the different ER variant proteins putatively encoded by these variant messenger RNAs will allow this issue the be addressed. Furthermore, the putative role of ER-α variants in the mechanisms that underlie breast tumorigenesis remain to be determined.