Results Relative expression of ERC4 messenger RNA in matched normal and breast tumor tissues A recently described triple-primer PCR assay was used to compare the relative expressions of ERC4 messenger RNA between adjacent normal and tumor components [19,24]. In this assay, three primers are used simultaneously during the PCR: the upper primer is able to recognize both WT-ER and ERC4 complementary DNA sequences, whereas the two lower primers are specific for each complementary DNA. Competitive amplification of two PCR products occurs, giving a final PCR product ratio related to the initial input of target complementary DNAs. This approach has been validated previously both by competitive amplification of spiked complementary DNA preparations [19] and by comparison to RNAse protection assays [24]. As shown Figure 1a, two PCR products were obtained, which migrated at the apparent size of 149 and 536 base pairs. These products have been shown to correspond to WT-ER and ERC4 messenger RNAs, respectively [24]. One should note the presence, in samples where WT-ER and ERC4 signals are high (Fig 1a, lane 5), of minor additional bands, one of which has been previously identified as corresponding to exon 2-duplicated ER-α variant complementary DNA [24]. The presence of these minor PCR products did not interfere with the quantitative aspect of the triple-primer PCR assay [24]. For each case, the mean of the ratios obtained in at least three independent PCR experiments, expressed in arbitrary units, is shown for both normal and tumor compartments (Fig 1b). A higher clone 4 messenger RNA relative expression in the tumor compartment was observed in 12 out of 18 cases. This difference did not, however, reach statistical significance (P = 0.47, Wilcoxon signed-rank test). When considering only the ER-positive/PR-positive subset (n = 9), as measured by the ligand-binding assay, a statistically higher ERC4 messenger RNA relative expression was found in the neoplastic components, as compared with matched adjacent normal tissues (P = 0.019, Wilcoxon signed-rank test). Relative expression of ERD3 messenger RNA in matched normal and breast tumor tissues A PCR assay, performed using primers annealing to sequences in exons 2 and 4, was used to investigate ERD3 messenger RNA expression relative to WT-ER in these 18 matched cases. We [18] and others [25] have previously shown that the coamplification of WT-ER and an exon-deleted ER-α variant complemetary DNA resulted in the amplification of two PCR products, the relative signal intensity of which provided a previously validated measurement of exon-deleted ER-α variant expression. Two PCR products were obtained, that migrated with an apparent size of 354 and 237 base pairs (Fig 2a). These fragments were shown by subcloning and sequencing to correspond to WT-ER and ERD3 messenger RNAs (data not shown). The relative ERD3 signal was measurable in the normal and in the tumor compartments of 13 cases (Fig 2b). Out of these 13 cases, ERD3 messenger RNA expression was higher in the normal compartment in 10 cases. This difference, however, did not reach statistical significance (P = 0.057, Wilcoxon signed-rank test). A significantly higher expression of ERD3 messenger RNA in the normal compared with the adjacent neoplastic components was found when only the ER-positive subset was considered, however (n = 8; P = 0.023, Wilcoxon signed-rank test). Relative expression of ERD5 messenger RNA in matched normal and breast tumor tissues Using primers annealing to sequences in exons 4 and 6 of WT-ER, we also investigated the relative expression of ERD5 messenger RNA in these 18 matched cases. Two PCR products were detected, that migrated at an apparent size of 483 and 344 base pairs, and that have previously been shown to correspond to WT-ER and ERD5 complementary DNAs, respectively (Fig 3a). As shown in Fig 3b, a statistically significant higher relative expression of ERD5 messenger RNA was observed in tumor components when this expression was measurable in both normal and adjacent tumor tissues (n = 15; P = 0.035, Wilcoxon signed-rank test).