EMSA and ChIP Assays Show that Sox6 Directly Binds to the ɛy Promoter Sox6 might repress the ɛy promoter, either through direct physical contact with the promoter or by regulating intermediates affecting the ɛy promoter. To investigate whether Sox6 is directly associated with the ɛy promoter, we first performed electrophoretic mobility shift assays (EMSA) using a c-Myc-tagged Sox6 in a reticulocyte lysate-based transcription/translation in vitro system. The probes used are listed in Figure 3A. The 36–base pair (bp) WT probe corresponds to the critical region of the ɛy promoter defined in our promoter deletion analyses. This probe contains two consensus Sox/Sox6 binding sites. Also included in our EMSA are three mutated probes that are, either truncated (M1), or mutated (M2 and M3) in Sox/Sox6 binding sites (Figure 3A). Sox6 is able to physically associate with the 36-bp region (Figure 3B) within the ɛy promoter defined by the deletion analysis experiments (Figure 2C). The 36-bp probe was shifted by the tagged Sox6 protein. Moreover, both c-Myc and Sox6 antibodies supershift the band, indicating that the binding is Sox6-specific. To rule out the possibility that the c-Myc tag itself binds to the probe, an HA-tagged Sox6 was used in another EMSA that confirmed these results (Figure 3C). Next, nuclear extracts from MEL cells were used in EMSA employing the same 36-bp probe. MEL cells, a murine erythroleukemic cell line, express adult β globins, but not ɛy [33]. Sox6 directly binds to this DNA sequence in MEL cells (Figure 3D). The intact consensus Sox/Sox6 binding sites of the DNA probe are required for the binding, as shown in the competition assay (Figure 3E). Ablation of putative Sox/Sox6 binding sites (M1 and M3) abolish their ability to compete in EMSA (Figure 3E). The M2 mutant probe may compete partially with WT binding. To investigate the functional significance of the intact Sox/Sox6 binding sites, the ɛy promoter reporter constructs with mutagenized Sox/Sox6 binding sites were co-transfected with the Sox6 overexpression vector into GM979 cells. Consistent with the EMSA results, the mutant ɛy promoter reporter constructs (with either one or both Sox/Sox6 binding sites mutagenized) do not result in significant promoter repression in transfection studies (Figure 3F). Thus, both sites are required for maximal repression of ɛy by Sox6, but not to the same degree. We also tested whether Sox6 binds to the ɛy promoter in vivo using chromatin immunoprecipitation (ChIP) (Figure 4). The Sox6-containing complex was immunoprecipitated from MEL cells or from liver cells of 15.5 dpc WT mice using Sox6 antibody. Figure 4 shows that the ɛy proximal promoter is readily immunoprecipitated with Sox6 antibody in both MEL cells and liver cells. Normal IgG was used as a negative control (Figure 4A). The above data (Figures 3 and 4) clearly indicate that Sox6 acts as a repressor of the ɛy gene by directly binding to the ɛy promoter, probably as a dimer. Figure 4 ChIP Assay MEL cells (A) and 15.5-dpc fetal liver cells (B) were treated as detailed in Materials and Methods. 10% of the sample was saved as total input (Inp); remaining samples were divided: plus Sox6 antibody (Ab+), minus Sox6 antibody (Ab−), as well as no DNA (DNA−) and normal rabbit IgG (IgG) that served as negative controls. Other controls for these experiments included PCR within the promoter of the α-globin gene and intron 24 of the p gene. Both were negative (unpublished data). PCR was carried out using primer pairs flanking the Sox/Sox6 binding sites (see Material and Methods) of the ɛy proximal promoter. For all reactions, we used 2 μl of immuno-precipitated DNA and 2 μl of 1/100 total input. Semiquantitative PCR was done within the exponential range. Multiple independent experiments were done.