Summary The model results presented here are consistent with the hypothesis that L. luymesi releases sulfate into hydrocarbon-rich sediments to fuel sulfide generation, allowing for the persistence of the longest-lived animal known. The importance of this process to sulfide generation in the modeled rhizosphere implies a complex relationship between an animal with bacterial endosymbionts and external sulfate-reducing bacteria, often in consortia with methane-oxidizing or hydrocarbon-degrading microbes. This positive interspecific relationship, including members of all three domains, would benefit both the tubeworms and the microbial consortia involved. This expands our existing concept of the potential for complexity in mutualisms and the benefits they may confer. Further complex relationships are likely to be discovered through continued research into the role of positive species interactions at the individual and community levels.