In order to prevent the precipitation of carbonate directly on the root surface, L. luymesi individuals may release hydrogen ions as well as sulfate through their roots. While hydrogen ion flux through the roots has not yet been empirically demonstrated, none of the nearly 5,000 tubeworms examined as part of this study were observed to have carbonate formed directly on their roots, suggesting that this form of precipitation is inhibited in some manner. In the model, diffusion of hydrogen ions across the root surface (the only form of release explicitly modeled) accounts for less than 40% of ion generation when carbonate precipitation is most vigorous. We speculate that L. luymesi may utilize the excess hydrogen ions generated by their sulfide-oxidizing symbionts to periodically raise the rate of hydrogen ion flux from their roots. This would not only supply additional hydrogen ions to sulfate-reducing bacteria, but could inhibit carbonate precipitation on the tubes and subsequent reduction of the root area utilizable as a respiratory surface. Further pH reduction could dissolve existing carbonate in sediments beneath the rhizosphere, thereby opening seepage pathways and allowing further root growth. This possibility is corroborated by the observation of young tubeworms that had apparently bored through bivalve shells in an experimental system (R. Carney, personal communication). Empirical measurements of hydrogen ion flux across the root tissue of L. luymesi are required to test these hypothetical mechanisms.