> top > projects

Projects

NameTDescription# Ann.AuthorMaintainerUpdated_atStatus

1-20 / 265 show all
craft-ca-core-ex-dev Development data for CRAFT CA shared task, core concepts + EXTENSIONS. This project contains the development (training) annotations for the Concept Annotation task of the CRAFT Shared Task 2019. This particular set of concept annotations is the "core+extensions" set. See the task description for details, but this set contains annotations to concepts that appear in the original 10 Open Biomedical Ontologies used for annotation PLUS annotations to extension classes created using the core concepts.90.2 KUniversity of Colorado Anschutz Medical Campuscraft-st2020-09-21Released
craft-ca-core-dev Development data for CRAFT CA shared task, core concepts only. This project contains the development (training) annotations for the Concept Annotation task of the CRAFT Shared Task 2019. This particular set of concept annotations is the "core" set. See the task description for details, but this set contains only annotations to concepts that appear in the original 10 Open Biomedical Ontologies used for annotation. (That is to say, it does not contain any annotations to extension classes).59.8 KUniversity of Colorado Anschutz Medical Campuscraft-st2020-09-21Released
bionlp-st-ge-2016-test It is the benchmark test data set of the BioNLP-ST 2016 GE task. It includes Genia-style event annotations to 14 full paper articles which are about NFκB proteins. For testing purpose, however, annotations are all blinded, which means users cannot see the annotations in this project. Instead, annotations in any other project can be compared to the hidden annotations in this project, then the annotations in the project will be automatically evaluated based on the comparison. A participant of GE task can get the evaluation of his/her result of automatic annotation, through following process: Create a new project. Import documents from the project, bionlp-st-2016-test-proteins to your project. Import annotations from the project, bionlp-st-2016-test-proteins to your project. At this point, you may want to compare you project to this project, the benchmark data set. It will show that protein annotations in your project is 100% correct, but other annotations, e.g., events, are 0%. Produce event annotations, using your system, upon the protein annotations. Upload your event annotations to your project. Compare your project to this project, to get evaluation. GE 2016 benchmark data set is provided as multi-layer annotations which include: bionlp-st-ge-2016-reference: benchmark reference data set bionlp-st-ge-2016-test: benchmark test data set (this project) bionlp-st-ge-2016-test-proteins: protein annotation to the benchmark test data set Following is supporting resources: bionlp-st-ge-2016-coref: coreference annotation bionlp-st-ge-2016-uniprot: Protein annotation with UniProt IDs. pmc-enju-pas: dependency parsing result produced by Enju UBERON-AE: annotation for anatomical entities as defined in UBERON ICD10: annotation for disease names as defined in ICD10 GO-BP: annotation for biological process names as defined in GO GO-CC: annotation for cellular component names as defined in GO A SPARQL-driven search interface is provided at http://bionlp.dbcls.jp/sparql.7.99 KDBCLSJin-Dong Kim2020-09-18Released
bionlp-st-ge-2016-test-proteins Protein annotations to the benchmark test data set of the BioNLP-ST 2016 GE task. A participant of the GE task may import the documents and annotations of this project to his/her own project, to begin with producing event annotations. For more details, please refer to the benchmark test data set (bionlp-st-ge-2016-test). 4.34 KDBCLSJin-Dong Kim2020-09-18Released
bionlp-st-ge-2016-coref Coreference annotation to the benchmark data set (reference and test) of BioNLP-ST 2016 GE task. For detailed information, please refer to the benchmark reference data set (bionlp-st-ge-2016-reference) and benchmark test data set (bionlp-st-ge-2016-test).853DBCLSJin-Dong Kim2020-09-18Released
bionlp-st-id-2011-training The training dataset from the infectious diseases (ID) task in the BioNLP Shared Task 2011. Entity types: - Genes and gene products: gene, RNA, and protein name mentions. - Two-component systems: mentions of the names of two-component regulatory systems, frequently embedding the names of the two Proteins forming the system.- Chemicals: mentions of chemical compounds such as "NaCL".- Organisms: mentions of organism names or organism specification through specific properties (e.g. "graRS mutant").- Regulons/Operons: mentions of names of specific regulons and operons.5.61 KUniversity of Tokyo Tsujii Laboratory, NaCTeM and Biocomplexity Institute of Virginia TechYue Wang2020-09-17Released
bionlp-st-2016-SeeDev-dev Entities and event annotations from the development set of the BioNLP-ST 2016 SeeDev task. SeeDev task focuses on seed storage and reserve accumulation on the model organism, Arabidopsis thaliana. The SeeDev task is based on the knowledge model Gene Regulation Network for Arabidopsis (GRNA) that meets the needs of text-mining (i.e. manual annotation of texts and automatic information extraction), experimental data indexing and retrieval and reuse in other plant systems. It is also expected to meet the requirements of the integration of the text knowledge with knowledge derived from experimental data in view of modeling in systems biology. GRNA model defines 16 different types of entities, and 22 types of event (in five sets of event types) that may be combined in complex events. For more information, please refer to the task website All annotations : Train set Development set Test set (without events) 61EstelleChaix2020-09-15Released
bionlp-st-2016-SeeDev-test Entities annotations from the test set of the BioNLP-ST 2016 SeeDev task. SeeDev task focuses on seed storage and reserve accumulation on the model organism, Arabidopsis thaliana. The SeeDev task is based on the knowledge model Gene Regulation Network for Arabidopsis (GRNA) that meets the needs of text-mining (i.e. manual annotation of texts and automatic information extraction), experimental data indexing and retrieval and reuse in other plant systems. It is also expected to meet the requirements of the integration of the text knowledge with knowledge derived from experimental data in view of modeling in systems biology. GRNA model defines 16 different types of entities, and 22 types of event (in five sets of event types) that may be combined in complex events. For more information, please refer to the task website All annotations : Train set Development set Test set (without events) 184EstelleChaix2020-09-15Released
bionlp-st-2016-SeeDev-training Entities and event annotations from the training set of the BioNLP-ST 2016 SeeDev task. SeeDev task focuses on seed storage and reserve accumulation on the model organism, Arabidopsis thaliana. The SeeDev task is based on the knowledge model Gene Regulation Network for Arabidopsis (GRNA) that meets the needs of text-mining (i.e. manual annotation of texts and automatic information extraction), experimental data indexing and retrieval and reuse in other plant systems. It is also expected to meet the requirements of the integration of the text knowledge with knowledge derived from experimental data in view of modeling in systems biology. GRNA model defines 16 different types of entities, and 22 types of event (in five sets of event types) that may be combined in complex events. For more information, please refer to the task website All annotations : Train set Development set Test set (without events) 35EstelleChaix2020-09-15Released
CellFinder CellFinder corpus4.75 KMariana Neves, Alexander Damaschun, Andreas Kurtz, Ulf LeserMariana Neves2020-09-15Released
bionlp-st-ge-2016-reference It is the benchmark reference data set of the BioNLP-ST 2016 GE task. It includes Genia-style event annotations to 20 full paper articles which are about NFκB proteins. The task is to develop an automatic annotation system which can produce annotation similar to the annotation in this data set as much as possible. For evaluation of the performance of a participating system, the system needs to produce annotations to the documents in the benchmark test data set (bionlp-st-ge-2016-test). GE 2016 benchmark data set is provided as multi-layer annotations which include: bionlp-st-ge-2016-reference: benchmark reference data set (this project) bionlp-st-ge-2016-test: benchmark test data set (annotations are blined) bionlp-st-ge-2016-test-proteins: protein annotation to the benchmark test data set Following is supporting resources: bionlp-st-ge-2016-coref: coreference annotation bionlp-st-ge-2016-uniprot: Protein annotation with UniProt IDs. pmc-enju-pas: dependency parsing result produced by Enju UBERON-AE: annotation for anatomical entities as defined in UBERON ICD10: annotation for disease names as defined in ICD10 GO-BP: annotation for biological process names as defined in GO GO-CC: annotation for cellular component names as defined in GO A SPARQL-driven search interface is provided at http://bionlp.dbcls.jp/sparql.14.4 KDBCLSJin-Dong Kim2020-09-13Released
SMAFIRA_Feedback_Research_Goal 15zebet2020-09-09Released
LitCovid-PubTator 22.6 KJin-Dong Kim2020-04-21Released
LitCovid-docs A comprehensive literature resource on the subject of Covid-19 is collected by NCBI: https://www.ncbi.nlm.nih.gov/research/coronavirus/ The LitCovid project@PubAnnotation is a collection of the titles and abstracts of the LitCovid dataset, for the people who want to perform text mining analysis. Please note that if you produce some annotation to the documents in this project, and contribute the annotation back to PubAnnotation, it will become publicly available together with contribution from other people. If you want to contribute your annotation to PubAnnotation, please refer to the documentation page: http://www.pubannotation.org/docs/submit-annotation/ The list of the PMID is sourced from here The 6 entries of the following PMIDs could not be included because they were not available from PubMed:32161394, 32104909, 32090470, 32076224, 32161394 32188956, 32238946. Below is a notice from the original LitCovid dataset: PUBLIC DOMAIN NOTICE National Center for Biotechnology Information This software/database is a "United States Government Work" under the terms of the United States Copyright Act. It was written as part of the author's official duties as a United States Government employee and thus cannot be copyrighted. This software/database is freely available to the public for use. The National Library of Medicine and the U.S. Government have not placed any restriction on its use or reproduction. Although all reasonable efforts have been taken to ensure the accuracy and reliability of the software and data, the NLM and the U.S. Government do not and cannot warrant the performance or results that may be obtained by using this software or data. The NLM and the U.S. Government disclaim all warranties, express or implied, including warranties of performance, merchantability or fitness for any particular purpose. Please cite the authors in any work or product based on this material : Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 0Jin-Dong Kim2020-04-08Released
PubMed_Structured_Abstracts Sections (zones) as retrieved from PubMed.131 Kzebet2020-03-31Released
LitCovid-ArguminSci Discourse elements for the documents in the LitCovid dataset. Annotations were automatically predicted by the ArguminSci tool (https://github.com/anlausch/ArguminSci)4.9 Kzebet2020-03-25Released
jnlpba-st-training The training data used in the task came from the GENIA version 3.02 corpus, This was formed from a controlled search on MEDLINE using the MeSH terms "human", "blood cells" and "transcription factors". From this search, 1,999 abstracts were selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification. Among the classes, 36 terminal classes were used to annotate the GENIA corpus. For the shared task only the classes protein, DNA, RNA, cell line and cell type were used. The first three incorporate several subclasses from the original taxonomy while the last two are interesting in order to make the task realistic for post-processing by a potential template filling application. The publication year of the training set ranges over 1990~1999.51.3 KGENIAYue Wang2020-02-02Released
SPECIES800 SPECIES 800 (S800): an abstract-based manually annotated corpus. S800 comprises 800 PubMed abstracts in which organism mentions were identified and mapped to the corresponding NCBI Taxonomy identifiers. Described in: The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text. Pafilis E, Frankild SP, Fanini L, Faulwetter S, Pavloudi C, et al. (2013). PLoS ONE, 2013, 8(6): e65390. doi:10.1371/journal.pone.00653903.71 KEvangelos Pafilis, Sune P. Frankild, Lucia Fanini, Sarah Faulwetter, Christina Pavloudi, Aikaterini Vasileiadou, Christos Arvanitidis, Lars Juhl Jensenevangelos2020-02-02Released
GENIAcorpus multi_cell (1,782) mono_cell (222) virus (2,136) protein_family_or_group (8,002) protein_complex (2,394) protein_molecule (21,290) protein_subunit (942) protein_substructure (129) protein_domain_or_region (1,044) protein_other (97) peptide (521) amino_acid_monomer (784) DNA_family_or_group (332) DNA_molecule (664) DNA_substructure (2) DNA_domain_or_region (39) DNA_other (16) RNA_family_or_group (1,545) RNA_molecule (554) RNA_substructure (106) RNA_domain_or_region (8,237) RNA_other (48) polynucleotide (259) nucleotide (243) lipid (2,375) carbohydrate (99) other_organic_compound (4,113) body_part (461) tissue (706) cell_type (7,473) cell_component (679) cell_line (4,129) other_artificial_source (211) inorganic (258) atom (342) other (21,056) 79.2 KGENIA ProjectYue Wang2020-02-02Released
BioLarkPubmedHPO 228 abstracts manually annotated with Human Phenotype Ontology (HPO) concepts and harmonized by three curators, which can be used as a reference standard for free text annotation of human phenotypes. For more info, please see Groza et al. "Automatic concept recognition using the human phenotype ontology reference and test suite corpora", 2015.7.24 KTudor Grozasimon2020-02-01Released
NameT# Ann.AuthorMaintainerUpdated_atStatus

1-20 / 265 show all
craft-ca-core-ex-dev 90.2 KUniversity of Colorado Anschutz Medical Campuscraft-st2020-09-21Released
craft-ca-core-dev 59.8 KUniversity of Colorado Anschutz Medical Campuscraft-st2020-09-21Released
bionlp-st-ge-2016-test 7.99 KDBCLSJin-Dong Kim2020-09-18Released
bionlp-st-ge-2016-test-proteins 4.34 KDBCLSJin-Dong Kim2020-09-18Released
bionlp-st-ge-2016-coref 853DBCLSJin-Dong Kim2020-09-18Released
bionlp-st-id-2011-training 5.61 KUniversity of Tokyo Tsujii Laboratory, NaCTeM and Biocomplexity Institute of Virginia TechYue Wang2020-09-17Released
bionlp-st-2016-SeeDev-dev 61EstelleChaix2020-09-15Released
bionlp-st-2016-SeeDev-test 184EstelleChaix2020-09-15Released
bionlp-st-2016-SeeDev-training 35EstelleChaix2020-09-15Released
CellFinder 4.75 KMariana Neves, Alexander Damaschun, Andreas Kurtz, Ulf LeserMariana Neves2020-09-15Released
bionlp-st-ge-2016-reference 14.4 KDBCLSJin-Dong Kim2020-09-13Released
SMAFIRA_Feedback_Research_Goal 15zebet2020-09-09Released
LitCovid-PubTator 22.6 KJin-Dong Kim2020-04-21Released
LitCovid-docs 0Jin-Dong Kim2020-04-08Released
PubMed_Structured_Abstracts 131 Kzebet2020-03-31Released
LitCovid-ArguminSci 4.9 Kzebet2020-03-25Released
jnlpba-st-training 51.3 KGENIAYue Wang2020-02-02Released
SPECIES800 3.71 KEvangelos Pafilis, Sune P. Frankild, Lucia Fanini, Sarah Faulwetter, Christina Pavloudi, Aikaterini Vasileiadou, Christos Arvanitidis, Lars Juhl Jensenevangelos2020-02-02Released
GENIAcorpus 79.2 KGENIA ProjectYue Wang2020-02-02Released
BioLarkPubmedHPO 7.24 KTudor Grozasimon2020-02-01Released