PubMed:12225856 JSONTXT 6 Projects

Unique assignment of inter-subunit association in GABA(A) alpha 1 beta 3 gamma 2 receptors determined by molecular modeling. Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABA(A) receptor (GABA(A)R alpha 1 beta 3 gamma 2). There is strong evidence that the heteropentameric receptor contains two alpha 1, two beta 3, and one gamma 2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 configurations. Here we use molecular modeling to thread the relevant GABA(A)R subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABA(A) sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABA(A) sequences were threaded onto the AChBP template in the gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangements. Only the gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangement satisfied three known criteria: (1) alpha 1 His(102) binds at the gamma 2 subunit interface in proximity to gamma 2 residues Thr(142), Phe(77), and Met(130); (2) alpha 1 residues 80-100 bind near gamma 2 residues 91-104; and (3) alpha 1 residues 58-67 bind near the beta 3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.

Annnotations TAB TSV DIC JSON TextAE-old TextAE

  • Denotations: 12
  • Blocks: 0
  • Relations: 0