A selected number of agrowaste residues of carbon, nitrogen, phosphorus and potassium source were used as an amendment with other mineral components for the mass cultivation of the selected rhizobacterial to monitor their growth pattern for optimization study. Mineral salt media (Na 2 CO 3 3.0g, K 2H 2PO 4 3.0g, MgSO 4. 7H 2O 7.0g, NaCl 0.1g, Urea 4.0g, CaCl 2. 2H 2O 0.1g, Trace element 1ml) was compounded, prepared and fortified with Carbon (Guinea corn chaff, Corn chaff, Millet Chaff), nitrogen (Guinea corn liquor, Corn liquor, Millet liquor, Cow blood meal, Cow urine), phosphates (poultry dripping, Bone Char, Crab Char), potassium (Plantain peels, Wood ash) sources. An aliquot of 1% of bacterial inoculum was seeded into the media. The set up was incubated at 37°C and 1.0 ml of the sample was obtained from the experimental setup at a 24h interval and then subjected to growth monitoring by viable plate count on nutrient agar and optical density at 600 nm. Range finding of nutrient for mass cultivation was developed for carbon source (Corn chaff) (0.0 gL -1, 5.0 gL -1, 10.0 gL -1, 15.0 gL -1, 20.0 gL -1and 25.0 gL -1), Nitrate (corn steep liquor) (0%, 10%, 20%, 30%, 40% and 50% (v/v)), Phosphorus (poultry droppings) (0.0 gL -1, 0.5 gL -1, 1.0 gL -1, 1.5 gL -1, 2.0 gL -1 and 2.5 gL -1) and Potassium (plantain peels)) (0.0 gL -1, 0.05 gL -1 0.10 gL -1, 0.15 gL -1, 0.20 gL -1 and 0.25 gL -1) ( Hanif et al., 2018; Nwaichi & Wegwu, 2012; Peekate & Abu, 2017). The results were analysed using two-way ANOVA in the selection of optimal nutrient source for optimization and the exponential phase from the bacterial growth data was used to deduce point of first-order kinetics. The substrate-bacterial growth dynamic was fitted into the Monod model and the optimal growth parameters was selected for and used in the bioremediation cocktail formulation and application study.