CONCLUSION This study aimed to formulate solid microcrystalline dispersion as a buccal film consisting of PVA and PHEA and to evaluate the effect of different PVA concentrations of film properties. When comparing two concentrations of PVA used, DSC and ATR-FTIR results showed similar trends, and no interaction between drug and polymers was observed. However, SEM images showed a smaller particle size for F5 film, and drug release profiles showed a faster dissolution rate during the first 15 min. Result confirmed that formulation of solid microcrystalline dispersions was achieved. Mainly, those were able to increase the drug dissolution rate. F5 and F6 films showed the highest drug release at 15 min, respectively 74% and 72% for F6 film. Therefore, PVA with a concentration of 5% w/v would be ideal when formulating a pharmaceutical film to achieve a fast-release profile. This study showed the suitability of the solvent casting method to produce fast dissolving film and confirmed the relevance of using different concentrations of PVA to improve dissolution profile. Moreover, addiction of PHEA resulted in being of advantage in increasing dissolution profile and regulating drug particle size.