More topically, it is interesting to note the conservation of N-linked glycosylation sites on S proteins from the SARS-CoV-2 and SARS (SI Fig. 6). SARS-CoV-2 possesses a total of 22 N-linked glycan sites compared with 23 on SARS, with 18 of these sites being in common. As such, it is likely that these glycans on this novel coronavirus would shield similar immunogenic epitopes that are observed on SARS S. As expected, most of the differences between the two viruses are observed on the S1 subunit, due to its amenability to substitutions while still remaining functionally competent. Furthermore, likely targets for the majority of antibodies targeting the spike are located on S1, resulting in greater levels of immune pressure upon this subunit. This notion is further reflected in terms of glycosylation, with all of the glycan sites conserved on the S2 subunit between SARS and SARS-CoV-2, whereas the S1 subunit exhibits glycan site additions and deletions (SI Fig. 7). Bioinformatic analysis of current SARS-CoV-2 spike genes (n = 566 as of 17 March 2020) from nextstrain61 (https://nextstrain.org/ncov) revealed low sequence diversity and no changes in glycosylation sites (SI Fig. 8).